一文詳解各種ElasticSearch查詢在Java中的實(shí)現(xiàn)
以下為摘錄自用,非本人撰寫

本文基于elasticsearch 7.13.2版本,es從7.0以后,發(fā)生了很大的更新。7.3以后,已經(jīng)不推薦使用TransportClient這個(gè)client,取而代之的是Java High Level REST Client。
01 測試使用的數(shù)據(jù)示例
首先是,Mysql中的部分測試數(shù)據(jù):

Mysql中的一行數(shù)據(jù)在ES中以一個(gè)文檔形式存在:
{
"_index" : "person",
"_type" : "_doc",
"_id" : "4",
"_score" : 1.0,
"_source" : {
"address" : "峨眉山",
"modifyTime" : "2021-06-29 19:46:25",
"createTime" : "2021-05-14 11:37:07",
"sect" : "峨嵋派",
"sex" : "男",
"skill" : "降龍十八掌",
"name" : "宋青書",
"id" : 4,
"power" : 50,
"age" : 21
}
}
簡單梳理了一下ES JavaAPI的相關(guān)體系,感興趣的可以自己研讀一下源碼。

接下來,我們用十幾個(gè)實(shí)例,迅速上手ES的查詢操作,每個(gè)示例將提供SQL語句、ES語句和Java代碼。
02 詞條查詢
所謂詞條查詢,也就是ES不會(huì)對查詢條件進(jìn)行分詞處理,只有當(dāng)詞條和查詢字符串完全匹配時(shí),才會(huì)被查詢到。
2.1 等值查詢-term
等值查詢,即篩選出一個(gè)字段等于特定值的所有記錄。
SQL:
select * from person where name = '張無忌';
而使用ES查詢語句卻很不一樣(注意查詢字段帶上keyword):
GET /person/_search
{
"query": {
"term": {
"name.keyword": {
"value": "張無忌",
"boost": 1.0
}
}
}
}
ElasticSearch 5.0以后,string類型有重大變更,移除了string類型,string字段被拆分成兩種新的數(shù)據(jù)類型: text用于全文搜索的,而keyword用于關(guān)鍵詞搜索。
查詢結(jié)果:
{
"took" : 0,
"timed_out" : false,
"_shards" : { // 分片信息
"total" : 1, // 總計(jì)分片數(shù)
"successful" : 1, // 查詢成功的分片數(shù)
"skipped" : 0, // 跳過查詢的分片數(shù)
"failed" : 0 // 查詢失敗的分片數(shù)
},
"hits" : { // 命中結(jié)果
"total" : {
"value" : 1, // 數(shù)量
"relation" : "eq" // 關(guān)系:等于
},
"max_score" : 2.8526313, // 最高分?jǐn)?shù)
"hits" : [
{
"_index" : "person", // 索引
"_type" : "_doc", // 類型
"_id" : "1",
"_score" : 2.8526313,
"_source" : {
"address" : "光明頂",
"modifyTime" : "2021-06-29 16:48:56",
"createTime" : "2021-05-14 16:50:33",
"sect" : "明教",
"sex" : "男",
"skill" : "九陽神功",
"name" : "張無忌",
"id" : 1,
"power" : 99,
"age" : 18
}
}
]
}
}
Java 中構(gòu)造 ES 請求的方式:(后續(xù)例子中只保留 SearchSourceBuilder 的構(gòu)建語句)
/**
* term精確查詢
*
* @throws IOException
*/
@Autowired
private RestHighLevelClient client;
@Test
public void queryTerm() throws IOException {
// 根據(jù)索引創(chuàng)建查詢請求
SearchRequest searchRequest = new SearchRequest("person");
SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();
// 構(gòu)建查詢語句
searchSourceBuilder.query(QueryBuilders.termQuery("name.keyword", "張無忌"));
System.out.println("searchSourceBuilder=====================" + searchSourceBuilder);
searchRequest.source(searchSourceBuilder);
SearchResponse response = client.search(searchRequest, RequestOptions.DEFAULT);
System.out.println(JSONObject.toJSON(response));
}
仔細(xì)觀察查詢結(jié)果,會(huì)發(fā)現(xiàn)ES查詢結(jié)果中會(huì)帶有_score這一項(xiàng),ES會(huì)根據(jù)結(jié)果匹配程度進(jìn)行評分。打分是會(huì)耗費(fèi)性能的,如果確認(rèn)自己的查詢不需要評分,就設(shè)置查詢語句關(guān)閉評分:
GET /person/_search
{
"query": {
"constant_score": {
"filter": {
"term": {
"sect.keyword": {
"value": "張無忌",
"boost": 1.0
}
}
},
"boost": 1.0
}
}
}
Java構(gòu)建查詢語句:
SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();
// 這樣構(gòu)造的查詢條件,將不進(jìn)行score計(jì)算,從而提高查詢效率
searchSourceBuilder.query(QueryBuilders.constantScoreQuery(QueryBuilders.termQuery("sect.keyword", "明教")));
2.2 多值查詢-terms
多條件查詢類似 Mysql 里的IN 查詢,例如:
select * from persons where sect in('明教','武當(dāng)派');
ES查詢語句:
GET /person/_search
{
"query": {
"terms": {
"sect.keyword": [
"明教",
"武當(dāng)派"
],
"boost": 1.0
}
}
}
Java 實(shí)現(xiàn):
SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();
// 構(gòu)建查詢語句
searchSourceBuilder.query(QueryBuilders.termsQuery("sect.keyword", Arrays.asList("明教", "武當(dāng)派")));
}
2.3 范圍查詢-range
范圍查詢,即查詢某字段在特定區(qū)間的記錄。
SQL:
select * from pesons where age between 18 and 22;
ES查詢語句:
GET /person/_search
{
"query": {
"range": {
"age": {
"from": 10,
"to": 20,
"include_lower": true,
"include_upper": true,
"boost": 1.0
}
}
}
Java構(gòu)建查詢條件:
SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();
// 構(gòu)建查詢語句
searchSourceBuilder.query(QueryBuilders.rangeQuery("age").gte(10).lte(30));
}
2.4 前綴查詢-prefix
前綴查詢類似于SQL中的模糊查詢。
SQL:
select * from persons where sect like '武當(dāng)%';
ES查詢語句:
{
"query": {
"prefix": {
"sect.keyword": {
"value": "武當(dāng)",
"boost": 1.0
}
}
}
}
Java構(gòu)建查詢條件:
SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();
// 構(gòu)建查詢語句
searchSourceBuilder.query(QueryBuilders.prefixQuery("sect.keyword","武當(dāng)"));
}
2.5 通配符查詢-wildcard
通配符查詢,與前綴查詢類似,都屬于模糊查詢的范疇,但通配符顯然功能更強(qiáng)。
SQL:
select * from persons where name like '張%忌';
ES查詢語句:
{
"query": {
"wildcard": {
"sect.keyword": {
"wildcard": "張*忌",
"boost": 1.0
}
}
}
}
Java構(gòu)建查詢條件:
SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();
// 構(gòu)建查詢語句
searchSourceBuilder.query(QueryBuilders.wildcardQuery("sect.keyword","張*忌"));
03 負(fù)責(zé)查詢
前面的例子都是單個(gè)條件查詢,在實(shí)際應(yīng)用中,我們很有可能會(huì)過濾多個(gè)值或字段。先看一個(gè)簡單的例子:
select * from persons where sex = '女' and sect = '明教';
這樣的多條件等值查詢,就要借用到組合過濾器了,其查詢語句是:
{
"query": {
"bool": {
"must": [
{
"term": {
"sex": {
"value": "女",
"boost": 1.0
}
}
},
{
"term": {
"sect.keywords": {
"value": "明教",
"boost": 1.0
}
}
}
],
"adjust_pure_negative": true,
"boost": 1.0
}
}
}
Java構(gòu)造查詢語句:
SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();
// 構(gòu)建查詢語句
searchSourceBuilder.query(QueryBuilders.boolQuery()
.must(QueryBuilders.termQuery("sex", "女"))
.must(QueryBuilders.termQuery("sect.keyword", "明教"))
);
3.1 布爾查詢
布爾過濾器(bool filter)屬于復(fù)合過濾器(compound filter)的一種 ,可以接受多個(gè)其他過濾器作為參數(shù),并將這些過濾器結(jié)合成各式各樣的布爾(邏輯)組合。

bool 過濾器下可以有4種子條件,可以任選其中任意一個(gè)或多個(gè)。filter是比較特殊的,這里先不說。
{
"bool" : {
"must" : [],
"should" : [],
"must_not" : [],
}
}
- must:所有的語句都必須匹配,與 ‘=’ 等價(jià)。
- must_not:所有的語句都不能匹配,與 ‘!=’ 或 not in 等價(jià)。
- should:至少有n個(gè)語句要匹配,n由參數(shù)控制。
精度控制:
所有 must 語句必須匹配,所有 must_not 語句都必須不匹配,但有多少 should 語句應(yīng)該匹配呢?默認(rèn)情況下,沒有 should 語句是必須匹配的,只有一個(gè)例外:那就是當(dāng)沒有 must 語句的時(shí)候,至少有一個(gè) should 語句必須匹配。
我們可以通過 minimum_should_match 參數(shù)控制需要匹配的 should 語句的數(shù)量,它既可以是一個(gè)絕對的數(shù)字,又可以是個(gè)百分比:
GET /person/_search
{
"query": {
"bool": {
"must": [
{
"term": {
"sex": {
"value": "女",
"boost": 1.0
}
}
}
],
"should": [
{
"term": {
"address.keyword": {
"value": "峨眉山",
"boost": 1.0
}
}
},
{
"term": {
"sect.keyword": {
"value": "明教",
"boost": 1.0
}
}
}
],
"adjust_pure_negative": true,
"minimum_should_match": "1",
"boost": 1.0
}
}
}
Java構(gòu)建查詢語句:
SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();
// 構(gòu)建查詢語句
searchSourceBuilder.query(QueryBuilders.boolQuery()
.must(QueryBuilders.termQuery("sex", "女"))
.should(QueryBuilders.termQuery("address.word", "峨眉山"))
.should(QueryBuilders.termQuery("sect.keyword", "明教"))
.minimumShouldMatch(1)
);
最后,看一個(gè)復(fù)雜些的例子,將bool的各子句聯(lián)合使用:
select * from persons where sex = '女' and age between 30 and 40 and sect != '明教' and (address = '峨眉山' OR skill = '暗器')
用 Elasticsearch 來表示上面的 SQL 例子:
GET /person/_search
{
"query": {
"bool": {
"must": [
{
"term": {
"sex": {
"value": "女",
"boost": 1.0
}
}
},
{
"range": {
"age": {
"from": 30,
"to": 40,
"include_lower": true,
"include_upper": true,
"boost": 1.0
}
}
}
],
"must_not": [
{
"term": {
"sect.keyword": {
"value": "明教",
"boost": 1.0
}
}
}
],
"should": [
{
"term": {
"address.keyword": {
"value": "峨眉山",
"boost": 1.0
}
}
},
{
"term": {
"skill.keyword": {
"value": "暗器",
"boost": 1.0
}
}
}
],
"adjust_pure_negative": true,
"minimum_should_match": "1",
"boost": 1.0
}
}
}
用Java構(gòu)建這個(gè)查詢條件:
SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();
// 構(gòu)建查詢語句
BoolQueryBuilder boolQueryBuilder = QueryBuilders.boolQuery()
.must(QueryBuilders.termQuery("sex", "女"))
.must(QueryBuilders.rangeQuery("age").gte(30).lte(40))
.mustNot(QueryBuilders.termQuery("sect.keyword", "明教"))
.should(QueryBuilders.termQuery("address.keyword", "峨眉山"))
.should(QueryBuilders.rangeQuery("power.keyword").gte(50).lte(80))
.minimumShouldMatch(1); // 設(shè)置should至少需要滿足幾個(gè)條件
// 將BoolQueryBuilder構(gòu)建到SearchSourceBuilder中
searchSourceBuilder.query(boolQueryBuilder);
3.2 Filter查詢
query和filter的區(qū)別:query查詢的時(shí)候,會(huì)先比較查詢條件,然后計(jì)算分值,最后返回文檔結(jié)果;而filter是先判斷是否滿足查詢條件,如果不滿足會(huì)緩存查詢結(jié)果(記錄該文檔不滿足結(jié)果),滿足的話,就直接緩存結(jié)果,filter不會(huì)對結(jié)果進(jìn)行評分,能夠提高查詢效率。
filter的使用方式比較多樣,下面用幾個(gè)例子演示一下。
方式一,單獨(dú)使用:
{
"query": {
"bool": {
"filter": [
{
"term": {
"sex": {
"value": "男",
"boost": 1.0
}
}
}
],
"adjust_pure_negative": true,
"boost": 1.0
}
}
}
單獨(dú)使用時(shí),filter與must基本一樣,不同的是filter不計(jì)算評分,效率更高。
Java構(gòu)建查詢語句:
SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();
// 構(gòu)建查詢語句
searchSourceBuilder.query(QueryBuilders.boolQuery()
.filter(QueryBuilders.termQuery("sex", "男"))
);
方式二,和must、must_not同級,相當(dāng)于子查詢:
select * from (select * from persons where sect = '明教')) a where sex = '女';
ES查詢語句:
{
"query": {
"bool": {
"must": [
{
"term": {
"sect.keyword": {
"value": "明教",
"boost": 1.0
}
}
}
],
"filter": [
{
"term": {
"sex": {
"value": "女",
"boost": 1.0
}
}
}
],
"adjust_pure_negative": true,
"boost": 1.0
}
}
}
Java:
SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();
// 構(gòu)建查詢語句
searchSourceBuilder.query(QueryBuilders.boolQuery()
.must(QueryBuilders.termQuery("sect.keyword", "明教"))
.filter(QueryBuilders.termQuery("sex", "女"))
);
方式三,將must、must_not置于filter下,這種方式是最常用的:
{
"query": {
"bool": {
"filter": [
{
"bool": {
"must": [
{
"term": {
"sect.keyword": {
"value": "明教",
"boost": 1.0
}
}
},
{
"range": {
"age": {
"from": 20,
"to": 35,
"include_lower": true,
"include_upper": true,
"boost": 1.0
}
}
}
],
"must_not": [
{
"term": {
"sex.keyword": {
"value": "女",
"boost": 1.0
}
}
}
],
"adjust_pure_negative": true,
"boost": 1.0
}
}
],
"adjust_pure_negative": true,
"boost": 1.0
}
}
}
Java:
SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();
// 構(gòu)建查詢語句
searchSourceBuilder.query(QueryBuilders.boolQuery()
.filter(QueryBuilders.boolQuery()
.must(QueryBuilders.termQuery("sect.keyword", "明教"))
.must(QueryBuilders.rangeQuery("age").gte(20).lte(35))
.mustNot(QueryBuilders.termQuery("sex.keyword", "女")))
);
04 聚合查詢
接下來,我們將用一些案例演示ES聚合查詢。
4.1 最值、平均值、求和
案例:查詢最大年齡、最小年齡、平均年齡。
SQL:
select max(age) from persons;
ES:
GET /person/_search
{
"aggregations": {
"max_age": {
"max": {
"field": "age"
}
}
}
}
Java:
@Autowired
private RestHighLevelClient client;
@Test
public void maxQueryTest() throws IOException {
// 聚合查詢條件
AggregationBuilder aggBuilder = AggregationBuilders.max("max_age").field("age");
SearchRequest searchRequest = new SearchRequest("person");
SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();
// 將聚合查詢條件構(gòu)建到SearchSourceBuilder中
searchSourceBuilder.aggregation(aggBuilder);
System.out.println("searchSourceBuilder----->" + searchSourceBuilder);
searchRequest.source(searchSourceBuilder);
// 執(zhí)行查詢,獲取SearchResponse
SearchResponse response = client.search(searchRequest, RequestOptions.DEFAULT);
System.out.println(JSONObject.toJSON(response));
}
使用聚合查詢,結(jié)果中默認(rèn)只會(huì)返回10條文檔數(shù)據(jù)(當(dāng)然我們關(guān)心的是聚合的結(jié)果,而非文檔)。返回多少條數(shù)據(jù)可以自主控制:
GET /person/_search
{
"size": 20,
"aggregations": {
"max_age": {
"max": {
"field": "age"
}
}
}
}
而Java中只需增加下面一條語句即可:
searchSourceBuilder.size(20);
與max類似,其他統(tǒng)計(jì)查詢也很簡單:
AggregationBuilder minBuilder = AggregationBuilders.min("min_age").field("age");
AggregationBuilder avgBuilder = AggregationBuilders.avg("min_age").field("age");
AggregationBuilder sumBuilder = AggregationBuilders.sum("min_age").field("age");
AggregationBuilder countBuilder = AggregationBuilders.count("min_age").field("age");
4.2 去重查詢
案例:查詢一共有多少個(gè)門派。
SQL:
select count(distinct sect) from persons;
ES:
{
"aggregations": {
"sect_count": {
"cardinality": {
"field": "sect.keyword"
}
}
}
}
Java:
@Test
public void cardinalityQueryTest() throws IOException {
// 創(chuàng)建某個(gè)索引的request
SearchRequest searchRequest = new SearchRequest("person");
// 查詢條件
SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();
// 聚合查詢
AggregationBuilder aggBuilder = AggregationBuilders.cardinality("sect_count").field("sect.keyword");
searchSourceBuilder.size(0);
// 將聚合查詢構(gòu)建到查詢條件中
searchSourceBuilder.aggregation(aggBuilder);
System.out.println("searchSourceBuilder----->" + searchSourceBuilder);
searchRequest.source(searchSourceBuilder);
// 執(zhí)行查詢,獲取結(jié)果
SearchResponse response = client.search(searchRequest, RequestOptions.DEFAULT);
System.out.println(JSONObject.toJSON(response));
}
4.3 分組聚合
4.3.1 單條件分組
案例:查詢每個(gè)門派的人數(shù)
SQL:
select sect,count(id) from mytest.persons group by sect;
ES:
{
"size": 0,
"aggregations": {
"sect_count": {
"terms": {
"field": "sect.keyword",
"size": 10,
"min_doc_count": 1,
"shard_min_doc_count": 0,
"show_term_doc_count_error": false,
"order": [
{
"_count": "desc"
},
{
"_key": "asc"
}
]
}
}
}
}
Java:
SearchRequest searchRequest = new SearchRequest("person");
SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();
searchSourceBuilder.size(0);
// 按sect分組
AggregationBuilder aggBuilder = AggregationBuilders.terms("sect_count").field("sect.keyword");
searchSourceBuilder.aggregation(aggBuilder);
4.3.2 多條件分組
案例:查詢每個(gè)門派各有多少個(gè)男性和女性
SQL:
select sect,sex,count(id) from mytest.persons group by sect,sex;
ES:
{
"aggregations": {
"sect_count": {
"terms": {
"field": "sect.keyword",
"size": 10
},
"aggregations": {
"sex_count": {
"terms": {
"field": "sex.keyword",
"size": 10
}
}
}
}
}
}
4.4 過濾聚合
前面所有聚合的例子請求都省略了 query ,整個(gè)請求只不過是一個(gè)聚合。這意味著我們對全部數(shù)據(jù)進(jìn)行了聚合,但現(xiàn)實(shí)應(yīng)用中,我們常常對特定范圍的數(shù)據(jù)進(jìn)行聚合,例如下例。
案例:查詢明教中的最大年齡。這涉及到聚合與條件查詢一起使用。
SQL:
select max(age) from mytest.persons where sect = '明教';
ES:
GET /person/_search
{
"query": {
"term": {
"sect.keyword": {
"value": "明教",
"boost": 1.0
}
}
},
"aggregations": {
"max_age": {
"max": {
"field": "age"
}
}
}
}
Java:
SearchRequest searchRequest = new SearchRequest("person");
SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();
// 聚合查詢條件
AggregationBuilder maxBuilder = AggregationBuilders.max("max_age").field("age");
// 等值查詢
searchSourceBuilder.query(QueryBuilders.termQuery("sect.keyword", "明教"));
searchSourceBuilder.aggregation(maxBuilder);
另外還有一些更復(fù)雜的查詢例子。
案例:查詢0-20,21-40,41-60,61以上的各有多少人。
SQL:
select sum(case when age<=20 then 1 else 0 end) ageGroup1, sum(case when age >20 and age <=40 then 1 else 0 end) ageGroup2, sum(case when age >40 and age <=60 then 1 else 0 end) ageGroup3, sum(case when age >60 and age <=200 then 1 else 0 end) ageGroup4 from mytest.persons;
ES:
{
"size": 0,
"aggregations": {
"age_avg": {
"range": {
"field": "age",
"ranges": [
{
"from": 0.0,
"to": 20.0
},
{
"from": 21.0,
"to": 40.0
},
{
"from": 41.0,
"to": 60.0
},
{
"from": 61.0,
"to": 200.0
}
],
"keyed": false
}
}
}
}
查詢結(jié)果:
"aggregations" : {
"age_avg" : {
"buckets" : [
{
"key" : "0.0-20.0",
"from" : 0.0,
"to" : 20.0,
"doc_count" : 3
},
{
"key" : "21.0-40.0",
"from" : 21.0,
"to" : 40.0,
"doc_count" : 13
},
{
"key" : "41.0-60.0",
"from" : 41.0,
"to" : 60.0,
"doc_count" : 4
},
{
"key" : "61.0-200.0",
"from" : 61.0,
"to" : 200.0,
"doc_count" : 1
}
]
}
}總結(jié)
到此這篇關(guān)于ElasticSearch查詢在Java中實(shí)現(xiàn)的文章就介紹到這了,更多相關(guān)Java實(shí)現(xiàn)ES查詢內(nèi)容請搜索腳本之家以前的文章或繼續(xù)瀏覽下面的相關(guān)文章希望大家以后多多支持腳本之家!
相關(guān)文章
mybatis中bind標(biāo)簽和concat的使用說明
這篇文章主要介紹了mybatis中bind標(biāo)簽和concat的使用說明,具有很好的參考價(jià)值,希望對大家有所幫助。一起跟隨小編過來看看吧2020-12-12
關(guān)于SpringBoot整合redis使用Lettuce客戶端超時(shí)問題
使用到Lettuce連接redis,一段時(shí)間后不操作,再去操作redis,會(huì)報(bào)連接超時(shí)錯(cuò)誤,在其重連后又可使用,糾結(jié)是什么原因?qū)е碌哪?,下面小編給大家?guī)砹薙pringBoot整合redis使用Lettuce客戶端超時(shí)問題及解決方案,一起看看吧2021-08-08
詳解Java中字符串緩沖區(qū)StringBuffer類的使用
StringBuffer與String類似,只不過StringBuffer在進(jìn)行字符串處理時(shí)不生成新的對象,下面我們就來詳解Java中字符串緩沖區(qū)StringBuffer類的使用:2016-06-06
Javaweb基礎(chǔ)入門HTML之table與form
HTML的全稱為超文本標(biāo)記語言,是一種標(biāo)記語言。它包括一系列標(biāo)簽.通過這些標(biāo)簽可以將網(wǎng)絡(luò)上的文檔格式統(tǒng)一,使分散的Internet資源連接為一個(gè)邏輯整體。HTML文本是由HTML命令組成的描述性文本,HTML命令可以說明文字,圖形、動(dòng)畫、聲音、表格、鏈接等2022-03-03
SpringBoot實(shí)現(xiàn)API接口的完整代碼
這篇文章主要給大家介紹了關(guān)于SpringBoot實(shí)現(xiàn)API接口的相關(guān)資料,文中通過示例代碼介紹的非常詳細(xì),對大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價(jià)值,需要的朋友們下面隨著小編來一起學(xué)習(xí)學(xué)習(xí)吧2020-10-10
教你如何使用Java實(shí)現(xiàn)WebSocket
這篇文章主要介紹了教你如何使用Java實(shí)現(xiàn)WebSocket問題,具有很好的參考價(jià)值,希望對大家有所幫助。如有錯(cuò)誤或未考慮完全的地方,望不吝賜教2023-06-06
springboot中的pom文件?project報(bào)錯(cuò)問題
這篇文章主要介紹了springboot中的pom文件?project報(bào)錯(cuò)問題,具有很好的參考價(jià)值,希望對大家有所幫助。如有錯(cuò)誤或未考慮完全的地方,望不吝賜教2022-01-01
Linux(centos7)安裝jdk1.8的詳細(xì)步驟
Linux的使用相信大家都要用到j(luò)ava吧,在使用java前我們得先安裝jdk以及配置環(huán)境變量等工作,下面這篇文章主要給大家介紹了關(guān)于Linux(centos7)安裝jdk1.8的詳細(xì)步驟,需要的朋友可以參考下2023-10-10

