淺談Service Manager成為Android進程間通信(IPC)機制Binder守護進程之路
上一篇文章Android進程間通信(IPC)機制Binder簡要介紹和學(xué)習(xí)計劃簡要介紹了Android系統(tǒng)進程間通信機制Binder的總體架構(gòu),它由Client、Server、Service Manager和驅(qū)動程序Binder四個組件構(gòu)成。本文著重介紹組件Service Manager,它是整個Binder機制的守護進程,用來管理開發(fā)者創(chuàng)建的各種Server,并且向Client提供查詢Server遠(yuǎn)程接口的功能。
既然Service Manager組件是用來管理Server并且向Client提供查詢Server遠(yuǎn)程接口的功能,那么,Service Manager就必然要和Server以及Client進行通信了。我們知道,Service Manger、Client和Server三者分別是運行在獨立的進程當(dāng)中,這樣它們之間的通信也屬于進程間通信了,而且也是采用Binder機制進行進程間通信,因此,Service Manager在充當(dāng)Binder機制的守護進程的角色的同時,也在充當(dāng)Server的角色,然而,它是一種特殊的Server,下面我們將會看到它的特殊之處。
與Service Manager相關(guān)的源代碼較多,這里不會完整去分析每一行代碼,主要是帶著Service Manager是如何成為整個Binder機制中的守護進程這條主線來一步一步地深入分析相關(guān)源代碼,包括從用戶空間到內(nèi)核空間的相關(guān)源代碼。希望讀者在閱讀下面的內(nèi)容之前,先閱讀一下前一篇文章提到的兩個參考資料Android深入淺出之Binder機制和Android Binder設(shè)計與實現(xiàn),熟悉相關(guān)概念和數(shù)據(jù)結(jié)構(gòu),這有助于理解下面要分析的源代碼。
Service Manager在用戶空間的源代碼位于frameworks/base/cmds/servicemanager目錄下,主要是由binder.h、binder.c和service_manager.c三個文件組成。Service Manager的入口位于service_manager.c文件中的main函數(shù):
int main(int argc, char **argv)
{
struct binder_state *bs;
void *svcmgr = BINDER_SERVICE_MANAGER;
bs = binder_open(128*1024);
if (binder_become_context_manager(bs)) {
LOGE("cannot become context manager (%s)\n", strerror(errno));
return -1;
}
svcmgr_handle = svcmgr;
binder_loop(bs, svcmgr_handler);
return 0;
}
main函數(shù)主要有三個功能:一是打開Binder設(shè)備文件;二是告訴Binder驅(qū)動程序自己是Binder上下文管理者,即我們前面所說的守護進程;三是進入一個無窮循環(huán),充當(dāng)Server的角色,等待Client的請求。進入這三個功能之間,先來看一下這里用到的結(jié)構(gòu)體binder_state、宏BINDER_SERVICE_MANAGER的定義:
struct binder_state定義在frameworks/base/cmds/servicemanager/binder.c文件中:
struct binder_state
{
int fd;
void *mapped;
unsigned mapsize;
};
fd是文件描述符,即表示打開的/dev/binder設(shè)備文件描述符;mapped是把設(shè)備文件/dev/binder映射到進程空間的起始地址;mapsize是上述內(nèi)存映射空間的大小。
宏BINDER_SERVICE_MANAGER定義frameworks/base/cmds/servicemanager/binder.h文件中:
/* the one magic object */
#define BINDER_SERVICE_MANAGER ((void*) 0)
它表示Service Manager的句柄為0。Binder通信機制使用句柄來代表遠(yuǎn)程接口,這個句柄的意義和Windows編程中用到的句柄是差不多的概念。前面說到,Service Manager在充當(dāng)守護進程的同時,它充當(dāng)Server的角色,當(dāng)它作為遠(yuǎn)程接口使用時,它的句柄值便為0,這就是它的特殊之處,其余的Server的遠(yuǎn)程接口句柄值都是一個大于0 而且由Binder驅(qū)動程序自動進行分配的。
函數(shù)首先是執(zhí)行打開Binder設(shè)備文件的操作binder_open,這個函數(shù)位于frameworks/base/cmds/servicemanager/binder.c文件中:
struct binder_state *binder_open(unsigned mapsize)
{
struct binder_state *bs;
bs = malloc(sizeof(*bs));
if (!bs) {
errno = ENOMEM;
return 0;
}
bs->fd = open("/dev/binder", O_RDWR);
if (bs->fd < 0) {
fprintf(stderr,"binder: cannot open device (%s)\n",
strerror(errno));
goto fail_open;
}
bs->mapsize = mapsize;
bs->mapped = mmap(NULL, mapsize, PROT_READ, MAP_PRIVATE, bs->fd, 0);
if (bs->mapped == MAP_FAILED) {
fprintf(stderr,"binder: cannot map device (%s)\n",
strerror(errno));
goto fail_map;
}
/* TODO: check version */
return bs;
fail_map:
close(bs->fd);
fail_open:
free(bs);
return 0;
}
通過文件操作函數(shù)open來打開/dev/binder設(shè)備文件。設(shè)備文件/dev/binder是在Binder驅(qū)動程序模塊初始化的時候創(chuàng)建的,我們先看一下這個設(shè)備文件的創(chuàng)建過程。進入到kernel/common/drivers/staging/android目錄中,打開binder.c文件,可以看到模塊初始化入口binder_init:
static struct file_operations binder_fops = {
.owner = THIS_MODULE,
.poll = binder_poll,
.unlocked_ioctl = binder_ioctl,
.mmap = binder_mmap,
.open = binder_open,
.flush = binder_flush,
.release = binder_release,
};
static struct miscdevice binder_miscdev = {
.minor = MISC_DYNAMIC_MINOR,
.name = "binder",
.fops = &binder_fops
};
static int __init binder_init(void)
{
int ret;
binder_proc_dir_entry_root = proc_mkdir("binder", NULL);
if (binder_proc_dir_entry_root)
binder_proc_dir_entry_proc = proc_mkdir("proc", binder_proc_dir_entry_root);
ret = misc_register(&binder_miscdev);
if (binder_proc_dir_entry_root) {
create_proc_read_entry("state", S_IRUGO, binder_proc_dir_entry_root, binder_read_proc_state, NULL);
create_proc_read_entry("stats", S_IRUGO, binder_proc_dir_entry_root, binder_read_proc_stats, NULL);
create_proc_read_entry("transactions", S_IRUGO, binder_proc_dir_entry_root, binder_read_proc_transactions, NULL);
create_proc_read_entry("transaction_log", S_IRUGO, binder_proc_dir_entry_root, binder_read_proc_transaction_log, &binder_transaction_log);
create_proc_read_entry("failed_transaction_log", S_IRUGO, binder_proc_dir_entry_root, binder_read_proc_transaction_log, &binder_transaction_log_failed);
}
return ret;
}
device_initcall(binder_init);
創(chuàng)建設(shè)備文件的地方在misc_register函數(shù)里面,關(guān)于misc設(shè)備的注冊,我們在Android日志系統(tǒng)驅(qū)動程序Logger源代碼分析一文中有提到,有興趣的讀取不訪去了解一下。其余的邏輯主要是在/proc目錄創(chuàng)建各種Binder相關(guān)的文件,供用戶訪問。從設(shè)備文件的操作方法binder_fops可以看出,前面的binder_open函數(shù)執(zhí)行語句:
bs->fd = open("/dev/binder", O_RDWR);
就進入到Binder驅(qū)動程序的binder_open函數(shù)了:
static int binder_open(struct inode *nodp, struct file *filp)
{
struct binder_proc *proc;
if (binder_debug_mask & BINDER_DEBUG_OPEN_CLOSE)
printk(KERN_INFO "binder_open: %d:%d\n", current->group_leader->pid, current->pid);
proc = kzalloc(sizeof(*proc), GFP_KERNEL);
if (proc == NULL)
return -ENOMEM;
get_task_struct(current);
proc->tsk = current;
INIT_LIST_HEAD(&proc->todo);
init_waitqueue_head(&proc->wait);
proc->default_priority = task_nice(current);
mutex_lock(&binder_lock);
binder_stats.obj_created[BINDER_STAT_PROC]++;
hlist_add_head(&proc->proc_node, &binder_procs);
proc->pid = current->group_leader->pid;
INIT_LIST_HEAD(&proc->delivered_death);
filp->private_data = proc;
mutex_unlock(&binder_lock);
if (binder_proc_dir_entry_proc) {
char strbuf[11];
snprintf(strbuf, sizeof(strbuf), "%u", proc->pid);
remove_proc_entry(strbuf, binder_proc_dir_entry_proc);
create_proc_read_entry(strbuf, S_IRUGO, binder_proc_dir_entry_proc, binder_read_proc_proc, proc);
}
return 0;
}
這個函數(shù)的主要作用是創(chuàng)建一個struct binder_proc數(shù)據(jù)結(jié)構(gòu)來保存打開設(shè)備文件/dev/binder的進程的上下文信息,并且將這個進程上下文信息保存在打開文件結(jié)構(gòu)struct file的私有數(shù)據(jù)成員變量private_data中,這樣,在執(zhí)行其它文件操作時,就通過打開文件結(jié)構(gòu)struct file來取回這個進程上下文信息了。這個進程上下文信息同時還會保存在一個全局哈希表binder_procs中,驅(qū)動程序內(nèi)部使用。binder_procs定義在文件的開頭:
static HLIST_HEAD(binder_procs);
結(jié)構(gòu)體struct binder_proc也是定義在kernel/common/drivers/staging/android/binder.c文件中:
struct binder_proc {
struct hlist_node proc_node;
struct rb_root threads;
struct rb_root nodes;
struct rb_root refs_by_desc;
struct rb_root refs_by_node;
int pid;
struct vm_area_struct *vma;
struct task_struct *tsk;
struct files_struct *files;
struct hlist_node deferred_work_node;
int deferred_work;
void *buffer;
ptrdiff_t user_buffer_offset;
struct list_head buffers;
struct rb_root free_buffers;
struct rb_root allocated_buffers;
size_t free_async_space;
struct page **pages;
size_t buffer_size;
uint32_t buffer_free;
struct list_head todo;
wait_queue_head_t wait;
struct binder_stats stats;
struct list_head delivered_death;
int max_threads;
int requested_threads;
int requested_threads_started;
int ready_threads;
long default_priority;
};
這個結(jié)構(gòu)體的成員比較多,這里就不一一說明了,簡單解釋一下四個成員變量threads、nodes、 refs_by_desc和refs_by_node,其它的我們在遇到的時候再詳細(xì)解釋。這四個成員變量都是表示紅黑樹的節(jié)點,也就是說,binder_proc分別掛會四個紅黑樹下。threads樹用來保存binder_proc進程內(nèi)用于處理用戶請求的線程,它的最大數(shù)量由max_threads來決定;node樹成用來保存binder_proc進程內(nèi)的Binder實體;refs_by_desc樹和refs_by_node樹用來保存binder_proc進程內(nèi)的Binder引用,即引用的其它進程的Binder實體,它分別用兩種方式來組織紅黑樹,一種是以句柄作來key值來組織,一種是以引用的實體節(jié)點的地址值作來key值來組織,它們都是表示同一樣?xùn)|西,只不過是為了內(nèi)部查找方便而用兩個紅黑樹來表示。
這樣,打開設(shè)備文件/dev/binder的操作就完成了,接著是對打開的設(shè)備文件進行內(nèi)存映射操作mmap:
bs->mapped = mmap(NULL, mapsize, PROT_READ, MAP_PRIVATE, bs->fd, 0);
對應(yīng)Binder驅(qū)動程序的binder_mmap函數(shù):
static int binder_mmap(struct file *filp, struct vm_area_struct *vma)
{
int ret;
struct vm_struct *area;
struct binder_proc *proc = filp->private_data;
const char *failure_string;
struct binder_buffer *buffer;
if ((vma->vm_end - vma->vm_start) > SZ_4M)
vma->vm_end = vma->vm_start + SZ_4M;
if (binder_debug_mask & BINDER_DEBUG_OPEN_CLOSE)
printk(KERN_INFO
"binder_mmap: %d %lx-%lx (%ld K) vma %lx pagep %lx\n",
proc->pid, vma->vm_start, vma->vm_end,
(vma->vm_end - vma->vm_start) / SZ_1K, vma->vm_flags,
(unsigned long)pgprot_val(vma->vm_page_prot));
if (vma->vm_flags & FORBIDDEN_MMAP_FLAGS) {
ret = -EPERM;
failure_string = "bad vm_flags";
goto err_bad_arg;
}
vma->vm_flags = (vma->vm_flags | VM_DONTCOPY) & ~VM_MAYWRITE;
if (proc->buffer) {
ret = -EBUSY;
failure_string = "already mapped";
goto err_already_mapped;
}
area = get_vm_area(vma->vm_end - vma->vm_start, VM_IOREMAP);
if (area == NULL) {
ret = -ENOMEM;
failure_string = "get_vm_area";
goto err_get_vm_area_failed;
}
proc->buffer = area->addr;
proc->user_buffer_offset = vma->vm_start - (uintptr_t)proc->buffer;
#ifdef CONFIG_CPU_CACHE_VIPT
if (cache_is_vipt_aliasing()) {
while (CACHE_COLOUR((vma->vm_start ^ (uint32_t)proc->buffer))) {
printk(KERN_INFO "binder_mmap: %d %lx-%lx maps %p bad alignment\n", proc->pid, vma->vm_start, vma->vm_end, proc->buffer);
vma->vm_start += PAGE_SIZE;
}
}
#endif
proc->pages = kzalloc(sizeof(proc->pages[0]) * ((vma->vm_end - vma->vm_start) / PAGE_SIZE), GFP_KERNEL);
if (proc->pages == NULL) {
ret = -ENOMEM;
failure_string = "alloc page array";
goto err_alloc_pages_failed;
}
proc->buffer_size = vma->vm_end - vma->vm_start;
vma->vm_ops = &binder_vm_ops;
vma->vm_private_data = proc;
if (binder_update_page_range(proc, 1, proc->buffer, proc->buffer + PAGE_SIZE, vma)) {
ret = -ENOMEM;
failure_string = "alloc small buf";
goto err_alloc_small_buf_failed;
}
buffer = proc->buffer;
INIT_LIST_HEAD(&proc->buffers);
list_add(&buffer->entry, &proc->buffers);
buffer->free = 1;
binder_insert_free_buffer(proc, buffer);
proc->free_async_space = proc->buffer_size / 2;
barrier();
proc->files = get_files_struct(current);
proc->vma = vma;
/*printk(KERN_INFO "binder_mmap: %d %lx-%lx maps %p\n", proc->pid, vma->vm_start, vma->vm_end, proc->buffer);*/
return 0;
err_alloc_small_buf_failed:
kfree(proc->pages);
proc->pages = NULL;
err_alloc_pages_failed:
vfree(proc->buffer);
proc->buffer = NULL;
err_get_vm_area_failed:
err_already_mapped:
err_bad_arg:
printk(KERN_ERR "binder_mmap: %d %lx-%lx %s failed %d\n", proc->pid, vma->vm_start, vma->vm_end, failure_string, ret);
return ret;
}
函數(shù)首先通過filp->private_data得到在打開設(shè)備文件/dev/binder時創(chuàng)建的struct binder_proc結(jié)構(gòu)。內(nèi)存映射信息放在vma參數(shù)中,注意,這里的vma的數(shù)據(jù)類型是struct vm_area_struct,它表示的是一塊連續(xù)的虛擬地址空間區(qū)域,在函數(shù)變量聲明的地方,我們還看到有一個類似的結(jié)構(gòu)體struct vm_struct,這個數(shù)據(jù)結(jié)構(gòu)也是表示一塊連續(xù)的虛擬地址空間區(qū)域,那么,這兩者的區(qū)別是什么呢?在Linux中,struct vm_area_struct表示的虛擬地址是給進程使用的,而struct vm_struct表示的虛擬地址是給內(nèi)核使用的,它們對應(yīng)的物理頁面都可以是不連續(xù)的。struct vm_area_struct表示的地址空間范圍是0~3G,而struct vm_struct表示的地址空間范圍是(3G + 896M + 8M) ~ 4G。struct vm_struct表示的地址空間范圍為什么不是3G~4G呢?原來,3G ~ (3G + 896M)范圍的地址是用來映射連續(xù)的物理頁面的,這個范圍的虛擬地址和對應(yīng)的實際物理地址有著簡單的對應(yīng)關(guān)系,即對應(yīng)0~896M的物理地址空間,而(3G + 896M) ~ (3G + 896M + 8M)是安全保護區(qū)域(例如,所有指向這8M地址空間的指針都是非法的),因此struct vm_struct使用(3G + 896M + 8M) ~ 4G地址空間來映射非連續(xù)的物理頁面。有關(guān)Linux的內(nèi)存管理知識,可以參考Android學(xué)習(xí)啟動篇一文提到的《Understanding the Linux Kernel》一書中的第8章。
這里為什么會同時使用進程虛擬地址空間和內(nèi)核虛擬地址空間來映射同一個物理頁面呢?這就是Binder進程間通信機制的精髓所在了,同一個物理頁面,一方映射到進程虛擬地址空間,一方面映射到內(nèi)核虛擬地址空間,這樣,進程和內(nèi)核之間就可以減少一次內(nèi)存拷貝了,提到了進程間通信效率。舉個例子如,Client要將一塊內(nèi)存數(shù)據(jù)傳遞給Server,一般的做法是,Client將這塊數(shù)據(jù)從它的進程空間拷貝到內(nèi)核空間中,然后內(nèi)核再將這個數(shù)據(jù)從內(nèi)核空間拷貝到Server的進程空間,這樣,Server就可以訪問這個數(shù)據(jù)了。但是在這種方法中,執(zhí)行了兩次內(nèi)存拷貝操作,而采用我們上面提到的方法,只需要把Client進程空間的數(shù)據(jù)拷貝一次到內(nèi)核空間,然后Server與內(nèi)核共享這個數(shù)據(jù)就可以了,整個過程只需要執(zhí)行一次內(nèi)存拷貝,提高了效率。
binder_mmap的原理講完了,這個函數(shù)的邏輯就好理解了。不過,這里還是先要解釋一下struct binder_proc結(jié)構(gòu)體的幾個成員變量。buffer成員變量是一個void*指針,它表示要映射的物理內(nèi)存在內(nèi)核空間中的起始位置;buffer_size成員變量是一個size_t類型的變量,表示要映射的內(nèi)存的大??;pages成員變量是一個struct page*類型的數(shù)組,struct page是用來描述物理頁面的數(shù)據(jù)結(jié)構(gòu);user_buffer_offset成員變量是一個ptrdiff_t類型的變量,它表示的是內(nèi)核使用的虛擬地址與進程使用的虛擬地址之間的差值,即如果某個物理頁面在內(nèi)核空間中對應(yīng)的虛擬地址是addr的話,那么這個物理頁面在進程空間對應(yīng)的虛擬地址就為addr + user_buffer_offset。
再解釋一下Binder驅(qū)動程序管理這個內(nèi)存映射地址空間的方法,即是如何管理buffer ~ (buffer + buffer_size)這段地址空間的,這個地址空間被劃分為一段一段來管理,每一段是結(jié)構(gòu)體struct binder_buffer來描述:
struct binder_buffer {
struct list_head entry; /* free and allocated entries by addesss */
struct rb_node rb_node; /* free entry by size or allocated entry */
/* by address */
unsigned free : 1;
unsigned allow_user_free : 1;
unsigned async_transaction : 1;
unsigned debug_id : 29;
struct binder_transaction *transaction;
struct binder_node *target_node;
size_t data_size;
size_t offsets_size;
uint8_t data[0];
};
每一個binder_buffer通過其成員entry按從低址到高地址連入到struct binder_proc中的buffers表示的鏈表中去,同時,每一個binder_buffer又分為正在使用的和空閑的,通過free成員變量來區(qū)分,空閑的binder_buffer通過成員變量rb_node連入到struct binder_proc中的free_buffers表示的紅黑樹中去,正在使用的binder_buffer通過成員變量rb_node連入到struct binder_proc中的allocated_buffers表示的紅黑樹中去。這樣做當(dāng)然是為了方便查詢和維護這塊地址空間了,這一點我們可以從其它的代碼中看到,等遇到的時候我們再分析。
終于可以回到binder_mmap這個函數(shù)來了,首先是對參數(shù)作一些健康體檢(sanity check),例如,要映射的內(nèi)存大小不能超過SIZE_4M,即4M,回到service_manager.c中的main 函數(shù),這里傳進來的值是128 * 1024個字節(jié),即128K,這個檢查沒有問題。通過健康體檢后,調(diào)用get_vm_area函數(shù)獲得一個空閑的vm_struct區(qū)間,并初始化proc結(jié)構(gòu)體的buffer、user_buffer_offset、pages和buffer_size和成員變量,接著調(diào)用binder_update_page_range來為虛擬地址空間proc->buffer ~ proc->buffer + PAGE_SIZE分配一個空閑的物理頁面,同時這段地址空間使用一個binder_buffer來描述,分別插入到proc->buffers鏈表和proc->free_buffers紅黑樹中去,最后,還初始化了proc結(jié)構(gòu)體的free_async_space、files和vma三個成員變量。
這里,我們繼續(xù)進入到binder_update_page_range函數(shù)中去看一下Binder驅(qū)動程序是如何實現(xiàn)把一個物理頁面同時映射到內(nèi)核空間和進程空間去的:
static int binder_update_page_range(struct binder_proc *proc, int allocate,
void *start, void *end, struct vm_area_struct *vma)
{
void *page_addr;
unsigned long user_page_addr;
struct vm_struct tmp_area;
struct page **page;
struct mm_struct *mm;
if (binder_debug_mask & BINDER_DEBUG_BUFFER_ALLOC)
printk(KERN_INFO "binder: %d: %s pages %p-%p\n",
proc->pid, allocate ? "allocate" : "free", start, end);
if (end <= start)
return 0;
if (vma)
mm = NULL;
else
mm = get_task_mm(proc->tsk);
if (mm) {
down_write(&mm->mmap_sem);
vma = proc->vma;
}
if (allocate == 0)
goto free_range;
if (vma == NULL) {
printk(KERN_ERR "binder: %d: binder_alloc_buf failed to "
"map pages in userspace, no vma\n", proc->pid);
goto err_no_vma;
}
for (page_addr = start; page_addr < end; page_addr += PAGE_SIZE) {
int ret;
struct page **page_array_ptr;
page = &proc->pages[(page_addr - proc->buffer) / PAGE_SIZE];
BUG_ON(*page);
*page = alloc_page(GFP_KERNEL | __GFP_ZERO);
if (*page == NULL) {
printk(KERN_ERR "binder: %d: binder_alloc_buf failed "
"for page at %p\n", proc->pid, page_addr);
goto err_alloc_page_failed;
}
tmp_area.addr = page_addr;
tmp_area.size = PAGE_SIZE + PAGE_SIZE /* guard page? */;
page_array_ptr = page;
ret = map_vm_area(&tmp_area, PAGE_KERNEL, &page_array_ptr);
if (ret) {
printk(KERN_ERR "binder: %d: binder_alloc_buf failed "
"to map page at %p in kernel\n",
proc->pid, page_addr);
goto err_map_kernel_failed;
}
user_page_addr =
(uintptr_t)page_addr + proc->user_buffer_offset;
ret = vm_insert_page(vma, user_page_addr, page[0]);
if (ret) {
printk(KERN_ERR "binder: %d: binder_alloc_buf failed "
"to map page at %lx in userspace\n",
proc->pid, user_page_addr);
goto err_vm_insert_page_failed;
}
/* vm_insert_page does not seem to increment the refcount */
}
if (mm) {
up_write(&mm->mmap_sem);
mmput(mm);
}
return 0;
free_range:
for (page_addr = end - PAGE_SIZE; page_addr >= start;
page_addr -= PAGE_SIZE) {
page = &proc->pages[(page_addr - proc->buffer) / PAGE_SIZE];
if (vma)
zap_page_range(vma, (uintptr_t)page_addr +
proc->user_buffer_offset, PAGE_SIZE, NULL);
err_vm_insert_page_failed:
unmap_kernel_range((unsigned long)page_addr, PAGE_SIZE);
err_map_kernel_failed:
__free_page(*page);
*page = NULL;
err_alloc_page_failed:
;
}
err_no_vma:
if (mm) {
up_write(&mm->mmap_sem);
mmput(mm);
}
return -ENOMEM;
}
這個函數(shù)既可以分配物理頁面,也可以用來釋放物理頁面,通過allocate參數(shù)來區(qū)別,這里我們只關(guān)注分配物理頁面的情況。要分配物理頁面的虛擬地址空間范圍為(start ~ end),函數(shù)前面的一些檢查邏輯就不看了,直接看中間的for循環(huán):
for (page_addr = start; page_addr < end; page_addr += PAGE_SIZE) {
int ret;
struct page **page_array_ptr;
page = &proc->pages[(page_addr - proc->buffer) / PAGE_SIZE];
BUG_ON(*page);
*page = alloc_page(GFP_KERNEL | __GFP_ZERO);
if (*page == NULL) {
printk(KERN_ERR "binder: %d: binder_alloc_buf failed "
"for page at %p\n", proc->pid, page_addr);
goto err_alloc_page_failed;
}
tmp_area.addr = page_addr;
tmp_area.size = PAGE_SIZE + PAGE_SIZE /* guard page? */;
page_array_ptr = page;
ret = map_vm_area(&tmp_area, PAGE_KERNEL, &page_array_ptr);
if (ret) {
printk(KERN_ERR "binder: %d: binder_alloc_buf failed "
"to map page at %p in kernel\n",
proc->pid, page_addr);
goto err_map_kernel_failed;
}
user_page_addr =
(uintptr_t)page_addr + proc->user_buffer_offset;
ret = vm_insert_page(vma, user_page_addr, page[0]);
if (ret) {
printk(KERN_ERR "binder: %d: binder_alloc_buf failed "
"to map page at %lx in userspace\n",
proc->pid, user_page_addr);
goto err_vm_insert_page_failed;
}
/* vm_insert_page does not seem to increment the refcount */
}
首先是調(diào)用alloc_page來分配一個物理頁面,這個函數(shù)返回一個struct page物理頁面描述符,根據(jù)這個描述的內(nèi)容初始化好struct vm_struct tmp_area結(jié)構(gòu)體,然后通過map_vm_area將這個物理頁面插入到tmp_area描述的內(nèi)核空間去,接著通過page_addr + proc->user_buffer_offset獲得進程虛擬空間地址,并通過vm_insert_page函數(shù)將這個物理頁面插入到進程地址空間去,參數(shù)vma代表了要插入的進程的地址空間。
這樣,frameworks/base/cmds/servicemanager/binder.c文件中的binder_open函數(shù)就描述完了,回到frameworks/base/cmds/servicemanager/service_manager.c文件中的main函數(shù),下一步就是調(diào)用binder_become_context_manager來通知Binder驅(qū)動程序自己是Binder機制的上下文管理者,即守護進程。binder_become_context_manager函數(shù)位于frameworks/base/cmds/servicemanager/binder.c文件中:
int binder_become_context_manager(struct binder_state *bs)
{
return ioctl(bs->fd, BINDER_SET_CONTEXT_MGR, 0);
}
這里通過調(diào)用ioctl文件操作函數(shù)來通知Binder驅(qū)動程序自己是守護進程,命令號是BINDER_SET_CONTEXT_MGR,沒有參數(shù)。BINDER_SET_CONTEXT_MGR定義為:
#define BINDER_SET_CONTEXT_MGR _IOW('b', 7, int)
這樣就進入到Binder驅(qū)動程序的binder_ioctl函數(shù),我們只關(guān)注BINDER_SET_CONTEXT_MGR命令:
static long binder_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
{
int ret;
struct binder_proc *proc = filp->private_data;
struct binder_thread *thread;
unsigned int size = _IOC_SIZE(cmd);
void __user *ubuf = (void __user *)arg;
/*printk(KERN_INFO "binder_ioctl: %d:%d %x %lx\n", proc->pid, current->pid, cmd, arg);*/
ret = wait_event_interruptible(binder_user_error_wait, binder_stop_on_user_error < 2);
if (ret)
return ret;
mutex_lock(&binder_lock);
thread = binder_get_thread(proc);
if (thread == NULL) {
ret = -ENOMEM;
goto err;
}
switch (cmd) {
......
case BINDER_SET_CONTEXT_MGR:
if (binder_context_mgr_node != NULL) {
printk(KERN_ERR "binder: BINDER_SET_CONTEXT_MGR already set\n");
ret = -EBUSY;
goto err;
}
if (binder_context_mgr_uid != -1) {
if (binder_context_mgr_uid != current->cred->euid) {
printk(KERN_ERR "binder: BINDER_SET_"
"CONTEXT_MGR bad uid %d != %d\n",
current->cred->euid,
binder_context_mgr_uid);
ret = -EPERM;
goto err;
}
} else
binder_context_mgr_uid = current->cred->euid;
binder_context_mgr_node = binder_new_node(proc, NULL, NULL);
if (binder_context_mgr_node == NULL) {
ret = -ENOMEM;
goto err;
}
binder_context_mgr_node->local_weak_refs++;
binder_context_mgr_node->local_strong_refs++;
binder_context_mgr_node->has_strong_ref = 1;
binder_context_mgr_node->has_weak_ref = 1;
break;
......
default:
ret = -EINVAL;
goto err;
}
ret = 0;
err:
if (thread)
thread->looper &= ~BINDER_LOOPER_STATE_NEED_RETURN;
mutex_unlock(&binder_lock);
wait_event_interruptible(binder_user_error_wait, binder_stop_on_user_error < 2);
if (ret && ret != -ERESTARTSYS)
printk(KERN_INFO "binder: %d:%d ioctl %x %lx returned %d\n", proc->pid, current->pid, cmd, arg, ret);
return ret;
}
繼續(xù)分析這個函數(shù)之前,又要解釋兩個數(shù)據(jù)結(jié)構(gòu)了,一個是struct binder_thread結(jié)構(gòu)體,顧名思久,它表示一個線程,這里就是執(zhí)行binder_become_context_manager函數(shù)的線程了。
struct binder_thread {
struct binder_proc *proc;
struct rb_node rb_node;
int pid;
int looper;
struct binder_transaction *transaction_stack;
struct list_head todo;
uint32_t return_error; /* Write failed, return error code in read buf */
uint32_t return_error2; /* Write failed, return error code in read */
/* buffer. Used when sending a reply to a dead process that */
/* we are also waiting on */
wait_queue_head_t wait;
struct binder_stats stats;
};
proc表示這個線程所屬的進程。struct binder_proc有一個成員變量threads,它的類型是rb_root,它表示一查紅黑樹,把屬于這個進程的所有線程都組織起來,struct binder_thread的成員變量rb_node就是用來鏈入這棵紅黑樹的節(jié)點了。looper成員變量表示線程的狀態(tài),它可以取下面這幾個值:
enum {
BINDER_LOOPER_STATE_REGISTERED = 0x01,
BINDER_LOOPER_STATE_ENTERED = 0x02,
BINDER_LOOPER_STATE_EXITED = 0x04,
BINDER_LOOPER_STATE_INVALID = 0x08,
BINDER_LOOPER_STATE_WAITING = 0x10,
BINDER_LOOPER_STATE_NEED_RETURN = 0x20
};
其余的成員變量,transaction_stack表示線程正在處理的事務(wù),todo表示發(fā)往該線程的數(shù)據(jù)列表,return_error和return_error2表示操作結(jié)果返回碼,wait用來阻塞線程等待某個事件的發(fā)生,stats用來保存一些統(tǒng)計信息。這些成員變量遇到的時候再分析它們的作用。
另外一個數(shù)據(jù)結(jié)構(gòu)是struct binder_node,它表示一個binder實體:
struct binder_node {
int debug_id;
struct binder_work work;
union {
struct rb_node rb_node;
struct hlist_node dead_node;
};
struct binder_proc *proc;
struct hlist_head refs;
int internal_strong_refs;
int local_weak_refs;
int local_strong_refs;
void __user *ptr;
void __user *cookie;
unsigned has_strong_ref : 1;
unsigned pending_strong_ref : 1;
unsigned has_weak_ref : 1;
unsigned pending_weak_ref : 1;
unsigned has_async_transaction : 1;
unsigned accept_fds : 1;
int min_priority : 8;
struct list_head async_todo;
};
rb_node和dead_node組成一個聯(lián)合體。 如果這個Binder實體還在正常使用,則使用rb_node來連入proc->nodes所表示的紅黑樹的節(jié)點,這棵紅黑樹用來組織屬于這個進程的所有Binder實體;如果這個Binder實體所屬的進程已經(jīng)銷毀,而這個Binder實體又被其它進程所引用,則這個Binder實體通過dead_node進入到一個哈希表中去存放。proc成員變量就是表示這個Binder實例所屬于進程了。refs成員變量把所有引用了該Binder實體的Binder引用連接起來構(gòu)成一個鏈表。internal_strong_refs、local_weak_refs和local_strong_refs表示這個Binder實體的引用計數(shù)。ptr和cookie成員變量分別表示這個Binder實體在用戶空間的地址以及附加數(shù)據(jù)。其余的成員變量就不描述了,遇到的時候再分析。
現(xiàn)在回到binder_ioctl函數(shù)中,首先是通過filp->private_data獲得proc變量,這里binder_mmap函數(shù)是一樣的。接著通過binder_get_thread函數(shù)獲得線程信息,我們來看一下這個函數(shù):
static struct binder_thread *binder_get_thread(struct binder_proc *proc)
{
struct binder_thread *thread = NULL;
struct rb_node *parent = NULL;
struct rb_node **p = &proc->threads.rb_node;
while (*p) {
parent = *p;
thread = rb_entry(parent, struct binder_thread, rb_node);
if (current->pid < thread->pid)
p = &(*p)->rb_left;
else if (current->pid > thread->pid)
p = &(*p)->rb_right;
else
break;
}
if (*p == NULL) {
thread = kzalloc(sizeof(*thread), GFP_KERNEL);
if (thread == NULL)
return NULL;
binder_stats.obj_created[BINDER_STAT_THREAD]++;
thread->proc = proc;
thread->pid = current->pid;
init_waitqueue_head(&thread->wait);
INIT_LIST_HEAD(&thread->todo);
rb_link_node(&thread->rb_node, parent, p);
rb_insert_color(&thread->rb_node, &proc->threads);
thread->looper |= BINDER_LOOPER_STATE_NEED_RETURN;
thread->return_error = BR_OK;
thread->return_error2 = BR_OK;
}
return thread;
}
這里把當(dāng)前線程current的pid作為鍵值,在進程proc->threads表示的紅黑樹中進行查找,看是否已經(jīng)為當(dāng)前線程創(chuàng)建過了binder_thread信息。在這個場景下,由于當(dāng)前線程是第一次進到這里,所以肯定找不到,即*p == NULL成立,于是,就為當(dāng)前線程創(chuàng)建一個線程上下文信息結(jié)構(gòu)體binder_thread,并初始化相應(yīng)成員變量,并插入到proc->threads所表示的紅黑樹中去,下次要使用時就可以從proc中找到了。注意,這里的thread->looper = BINDER_LOOPER_STATE_NEED_RETURN。
回到binder_ioctl函數(shù),繼續(xù)往下面,有兩個全局變量binder_context_mgr_node和binder_context_mgr_uid,它定義如下:
static struct binder_node *binder_context_mgr_node;
static uid_t binder_context_mgr_uid = -1;
binder_context_mgr_node用來表示Service Manager實體,binder_context_mgr_uid表示Service Manager守護進程的uid。在這個場景下,由于當(dāng)前線程是第一次進到這里,所以binder_context_mgr_node為NULL,binder_context_mgr_uid為-1,于是初始化binder_context_mgr_uid為current->cred->euid,這樣,當(dāng)前線程就成為Binder機制的守護進程了,并且通過binder_new_node為Service Manager創(chuàng)建Binder實體:
static struct binder_node *
binder_new_node(struct binder_proc *proc, void __user *ptr, void __user *cookie)
{
struct rb_node **p = &proc->nodes.rb_node;
struct rb_node *parent = NULL;
struct binder_node *node;
while (*p) {
parent = *p;
node = rb_entry(parent, struct binder_node, rb_node);
if (ptr < node->ptr)
p = &(*p)->rb_left;
else if (ptr > node->ptr)
p = &(*p)->rb_right;
else
return NULL;
}
node = kzalloc(sizeof(*node), GFP_KERNEL);
if (node == NULL)
return NULL;
binder_stats.obj_created[BINDER_STAT_NODE]++;
rb_link_node(&node->rb_node, parent, p);
rb_insert_color(&node->rb_node, &proc->nodes);
node->debug_id = ++binder_last_id;
node->proc = proc;
node->ptr = ptr;
node->cookie = cookie;
node->work.type = BINDER_WORK_NODE;
INIT_LIST_HEAD(&node->work.entry);
INIT_LIST_HEAD(&node->async_todo);
if (binder_debug_mask & BINDER_DEBUG_INTERNAL_REFS)
printk(KERN_INFO "binder: %d:%d node %d u%p c%p created\n",
proc->pid, current->pid, node->debug_id,
node->ptr, node->cookie);
return node;
}
注意,這里傳進來的ptr和cookie均為NULL。函數(shù)首先檢查proc->nodes紅黑樹中是否已經(jīng)存在以ptr為鍵值的node,如果已經(jīng)存在,就返回NULL。在這個場景下,由于當(dāng)前線程是第一次進入到這里,所以肯定不存在,于是就新建了一個ptr為NULL的binder_node,并且初始化其它成員變量,并插入到proc->nodes紅黑樹中去。
binder_new_node返回到binder_ioctl函數(shù)后,就把新建的binder_node指針保存在binder_context_mgr_node中了,緊接著,又初始化了binder_context_mgr_node的引用計數(shù)值。
這樣,BINDER_SET_CONTEXT_MGR命令就執(zhí)行完畢了,binder_ioctl函數(shù)返回之前,執(zhí)行了下面語句:
if (thread)
thread->looper &= ~BINDER_LOOPER_STATE_NEED_RETURN;
回憶上面執(zhí)行binder_get_thread時,thread->looper = BINDER_LOOPER_STATE_NEED_RETURN,執(zhí)行了這條語句后,thread->looper = 0。
回到frameworks/base/cmds/servicemanager/service_manager.c文件中的main函數(shù),下一步就是調(diào)用binder_loop函數(shù)進入循環(huán),等待Client來請求了。binder_loop函數(shù)定義在frameworks/base/cmds/servicemanager/binder.c文件中:
void binder_loop(struct binder_state *bs, binder_handler func)
{
int res;
struct binder_write_read bwr;
unsigned readbuf[32];
bwr.write_size = 0;
bwr.write_consumed = 0;
bwr.write_buffer = 0;
readbuf[0] = BC_ENTER_LOOPER;
binder_write(bs, readbuf, sizeof(unsigned));
for (;;) {
bwr.read_size = sizeof(readbuf);
bwr.read_consumed = 0;
bwr.read_buffer = (unsigned) readbuf;
res = ioctl(bs->fd, BINDER_WRITE_READ, &bwr);
if (res < 0) {
LOGE("binder_loop: ioctl failed (%s)\n", strerror(errno));
break;
}
res = binder_parse(bs, 0, readbuf, bwr.read_consumed, func);
if (res == 0) {
LOGE("binder_loop: unexpected reply?!\n");
break;
}
if (res < 0) {
LOGE("binder_loop: io error %d %s\n", res, strerror(errno));
break;
}
}
}
首先是通過binder_write函數(shù)執(zhí)行BC_ENTER_LOOPER命令告訴Binder驅(qū)動程序, Service Manager要進入循環(huán)了。
這里又要介紹一下設(shè)備文件/dev/binder文件操作函數(shù)ioctl的操作碼BINDER_WRITE_READ了,首先看定義:
#define BINDER_WRITE_READ _IOWR('b', 1, struct binder_write_read)
這個io操作碼有一個參數(shù),形式為struct binder_write_read:
struct binder_write_read {
signed long write_size; /* bytes to write */
signed long write_consumed; /* bytes consumed by driver */
unsigned long write_buffer;
signed long read_size; /* bytes to read */
signed long read_consumed; /* bytes consumed by driver */
unsigned long read_buffer;
};
這里順便說一下,用戶空間程序和Binder驅(qū)動程序交互大多數(shù)都是通過BINDER_WRITE_READ命令的,write_bufffer和read_buffer所指向的數(shù)據(jù)結(jié)構(gòu)還指定了具體要執(zhí)行的操作,write_bufffer和read_buffer所指向的結(jié)構(gòu)體是struct binder_transaction_data:
struct binder_transaction_data {
/* The first two are only used for bcTRANSACTION and brTRANSACTION,
* identifying the target and contents of the transaction.
*/
union {
size_t handle; /* target descriptor of command transaction */
void *ptr; /* target descriptor of return transaction */
} target;
void *cookie; /* target object cookie */
unsigned int code; /* transaction command */
/* General information about the transaction. */
unsigned int flags;
pid_t sender_pid;
uid_t sender_euid;
size_t data_size; /* number of bytes of data */
size_t offsets_size; /* number of bytes of offsets */
/* If this transaction is inline, the data immediately
* follows here; otherwise, it ends with a pointer to
* the data buffer.
*/
union {
struct {
/* transaction data */
const void *buffer;
/* offsets from buffer to flat_binder_object structs */
const void *offsets;
} ptr;
uint8_t buf[8];
} data;
};
有一個聯(lián)合體target,當(dāng)這個BINDER_WRITE_READ命令的目標(biāo)對象是本地Binder實體時,就使用ptr來表示這個對象在本進程中的地址,否則就使用handle來表示這個Binder實體的引用。只有目標(biāo)對象是Binder實體時,cookie成員變量才有意義,表示一些附加數(shù)據(jù),由Binder實體來解釋這個個附加數(shù)據(jù)。code表示要對目標(biāo)對象請求的命令代碼,有很多請求代碼,這里就不列舉了,在這個場景中,就是BC_ENTER_LOOPER了,用來告訴Binder驅(qū)動程序, Service Manager要進入循環(huán)了。其余的請求命令代碼可以參考kernel/common/drivers/staging/android/binder.h文件中定義的兩個枚舉類型BinderDriverReturnProtocol和BinderDriverCommandProtocol。
flags成員變量表示事務(wù)標(biāo)志:
enum transaction_flags {
TF_ONE_WAY = 0x01, /* this is a one-way call: async, no return */
TF_ROOT_OBJECT = 0x04, /* contents are the component's root object */
TF_STATUS_CODE = 0x08, /* contents are a 32-bit status code */
TF_ACCEPT_FDS = 0x10, /* allow replies with file descriptors */
};
每一個標(biāo)志位所表示的意義看注釋就行了,遇到時再具體分析。
sender_pid和sender_euid表示發(fā)送者進程的pid和euid。
data_size表示data.buffer緩沖區(qū)的大小,offsets_size表示data.offsets緩沖區(qū)的大小。這里需要解釋一下data成員變量,命令的真正要傳輸?shù)臄?shù)據(jù)就保存在data.buffer緩沖區(qū)中,前面的一成員變量都是一些用來描述數(shù)據(jù)的特征的。data.buffer所表示的緩沖區(qū)數(shù)據(jù)分為兩類,一類是普通數(shù)據(jù),Binder驅(qū)動程序不關(guān)心,一類是Binder實體或者Binder引用,這需要Binder驅(qū)動程序介入處理。為什么呢?想想,如果一個進程A傳遞了一個Binder實體或Binder引用給進程B,那么,Binder驅(qū)動程序就需要介入維護這個Binder實體或者引用的引用計數(shù),防止B進程還在使用這個Binder實體時,A卻銷毀這個實體,這樣的話,B進程就會crash了。所以在傳輸數(shù)據(jù)時,如果數(shù)據(jù)中含有Binder實體和Binder引和,就需要告訴Binder驅(qū)動程序它們的具體位置,以便Binder驅(qū)動程序能夠去維護它們。data.offsets的作用就在這里了,它指定在data.buffer緩沖區(qū)中,所有Binder實體或者引用的偏移位置。每一個Binder實體或者引用,通過struct flat_binder_object 來表示:
/*
* This is the flattened representation of a Binder object for transfer
* between processes. The 'offsets' supplied as part of a binder transaction
* contains offsets into the data where these structures occur. The Binder
* driver takes care of re-writing the structure type and data as it moves
* between processes.
*/
struct flat_binder_object {
/* 8 bytes for large_flat_header. */
unsigned long type;
unsigned long flags;
/* 8 bytes of data. */
union {
void *binder; /* local object */
signed long handle; /* remote object */
};
/* extra data associated with local object */
void *cookie;
};
type表示Binder對象的類型,它取值如下所示:
enum {
BINDER_TYPE_BINDER = B_PACK_CHARS('s', 'b', '*', B_TYPE_LARGE),
BINDER_TYPE_WEAK_BINDER = B_PACK_CHARS('w', 'b', '*', B_TYPE_LARGE),
BINDER_TYPE_HANDLE = B_PACK_CHARS('s', 'h', '*', B_TYPE_LARGE),
BINDER_TYPE_WEAK_HANDLE = B_PACK_CHARS('w', 'h', '*', B_TYPE_LARGE),
BINDER_TYPE_FD = B_PACK_CHARS('f', 'd', '*', B_TYPE_LARGE),
};
flags表示Binder對象的標(biāo)志,該域只對第一次傳遞Binder實體時有效,因為此刻驅(qū)動需要在內(nèi)核中創(chuàng)建相應(yīng)的實體節(jié)點,有些參數(shù)需要從該域取出。
type和flags的具體意義可以參考Android Binder設(shè)計與實現(xiàn)一文。
最后,binder表示這是一個Binder實體,handle表示這是一個Binder引用,當(dāng)這是一個Binder實體時,cookie才有意義,表示附加數(shù)據(jù),由進程自己解釋。
數(shù)據(jù)結(jié)構(gòu)分析完了,回到binder_loop函數(shù)中,首先是執(zhí)行BC_ENTER_LOOPER命令:
readbuf[0] = BC_ENTER_LOOPER;
binder_write(bs, readbuf, sizeof(unsigned));
進入到binder_write函數(shù)中:
int binder_write(struct binder_state *bs, void *data, unsigned len)
{
struct binder_write_read bwr;
int res;
bwr.write_size = len;
bwr.write_consumed = 0;
bwr.write_buffer = (unsigned) data;
bwr.read_size = 0;
bwr.read_consumed = 0;
bwr.read_buffer = 0;
res = ioctl(bs->fd, BINDER_WRITE_READ, &bwr);
if (res < 0) {
fprintf(stderr,"binder_write: ioctl failed (%s)\n",
strerror(errno));
}
return res;
}
注意這里的binder_write_read變量bwr,write_size大小為4,表示write_buffer緩沖區(qū)大小為4,它的內(nèi)容是一個BC_ENTER_LOOPER命令協(xié)議號,read_buffer為空。接著又是調(diào)用ioctl函數(shù)進入到Binder驅(qū)動程序的binder_ioctl函數(shù),這里我們也只是關(guān)注BC_ENTER_LOOPER相關(guān)的邏輯:
static long binder_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
{
int ret;
struct binder_proc *proc = filp->private_data;
struct binder_thread *thread;
unsigned int size = _IOC_SIZE(cmd);
void __user *ubuf = (void __user *)arg;
/*printk(KERN_INFO "binder_ioctl: %d:%d %x %lx\n", proc->pid, current->pid, cmd, arg);*/
ret = wait_event_interruptible(binder_user_error_wait, binder_stop_on_user_error < 2);
if (ret)
return ret;
mutex_lock(&binder_lock);
thread = binder_get_thread(proc);
if (thread == NULL) {
ret = -ENOMEM;
goto err;
}
switch (cmd) {
case BINDER_WRITE_READ: {
struct binder_write_read bwr;
if (size != sizeof(struct binder_write_read)) {
ret = -EINVAL;
goto err;
}
if (copy_from_user(&bwr, ubuf, sizeof(bwr))) {
ret = -EFAULT;
goto err;
}
if (binder_debug_mask & BINDER_DEBUG_READ_WRITE)
printk(KERN_INFO "binder: %d:%d write %ld at %08lx, read %ld at %08lx\n",
proc->pid, thread->pid, bwr.write_size, bwr.write_buffer, bwr.read_size, bwr.read_buffer);
if (bwr.write_size > 0) {
ret = binder_thread_write(proc, thread, (void __user *)bwr.write_buffer, bwr.write_size, &bwr.write_consumed);
if (ret < 0) {
bwr.read_consumed = 0;
if (copy_to_user(ubuf, &bwr, sizeof(bwr)))
ret = -EFAULT;
goto err;
}
}
if (bwr.read_size > 0) {
ret = binder_thread_read(proc, thread, (void __user *)bwr.read_buffer, bwr.read_size, &bwr.read_consumed, filp->f_flags & O_NONBLOCK);
if (!list_empty(&proc->todo))
wake_up_interruptible(&proc->wait);
if (ret < 0) {
if (copy_to_user(ubuf, &bwr, sizeof(bwr)))
ret = -EFAULT;
goto err;
}
}
if (binder_debug_mask & BINDER_DEBUG_READ_WRITE)
printk(KERN_INFO "binder: %d:%d wrote %ld of %ld, read return %ld of %ld\n",
proc->pid, thread->pid, bwr.write_consumed, bwr.write_size, bwr.read_consumed, bwr.read_size);
if (copy_to_user(ubuf, &bwr, sizeof(bwr))) {
ret = -EFAULT;
goto err;
}
break;
}
......
default:
ret = -EINVAL;
goto err;
}
ret = 0;
err:
if (thread)
thread->looper &= ~BINDER_LOOPER_STATE_NEED_RETURN;
mutex_unlock(&binder_lock);
wait_event_interruptible(binder_user_error_wait, binder_stop_on_user_error < 2);
if (ret && ret != -ERESTARTSYS)
printk(KERN_INFO "binder: %d:%d ioctl %x %lx returned %d\n", proc->pid, current->pid, cmd, arg, ret);
return ret;
}
函數(shù)前面的代碼就不解釋了,同前面調(diào)用binder_become_context_manager是一樣的,只不過這里調(diào)用binder_get_thread函數(shù)獲取binder_thread,就能從proc中直接找到了,不需要創(chuàng)建一個新的。
首先是通過copy_from_user(&bwr, ubuf, sizeof(bwr))語句把用戶傳遞進來的參數(shù)轉(zhuǎn)換成struct binder_write_read結(jié)構(gòu)體,并保存在本地變量bwr中,這里可以看出bwr.write_size等于4,于是進入binder_thread_write函數(shù),這里我們只關(guān)注BC_ENTER_LOOPER相關(guān)的代碼:
int
binder_thread_write(struct binder_proc *proc, struct binder_thread *thread,
void __user *buffer, int size, signed long *consumed)
{
uint32_t cmd;
void __user *ptr = buffer + *consumed;
void __user *end = buffer + size;
while (ptr < end && thread->return_error == BR_OK) {
if (get_user(cmd, (uint32_t __user *)ptr))
return -EFAULT;
ptr += sizeof(uint32_t);
if (_IOC_NR(cmd) < ARRAY_SIZE(binder_stats.bc)) {
binder_stats.bc[_IOC_NR(cmd)]++;
proc->stats.bc[_IOC_NR(cmd)]++;
thread->stats.bc[_IOC_NR(cmd)]++;
}
switch (cmd) {
......
case BC_ENTER_LOOPER:
if (binder_debug_mask & BINDER_DEBUG_THREADS)
printk(KERN_INFO "binder: %d:%d BC_ENTER_LOOPER\n",
proc->pid, thread->pid);
if (thread->looper & BINDER_LOOPER_STATE_REGISTERED) {
thread->looper |= BINDER_LOOPER_STATE_INVALID;
binder_user_error("binder: %d:%d ERROR:"
" BC_ENTER_LOOPER called after "
"BC_REGISTER_LOOPER\n",
proc->pid, thread->pid);
}
thread->looper |= BINDER_LOOPER_STATE_ENTERED;
break;
......
default:
printk(KERN_ERR "binder: %d:%d unknown command %d\n", proc->pid, thread->pid, cmd);
return -EINVAL;
}
*consumed = ptr - buffer;
}
return 0;
}
回憶前面執(zhí)行binder_become_context_manager到binder_ioctl時,調(diào)用binder_get_thread函數(shù)創(chuàng)建的thread->looper值為0,所以這里執(zhí)行完BC_ENTER_LOOPER時,thread->looper值就變?yōu)锽INDER_LOOPER_STATE_ENTERED了,表明當(dāng)前線程進入循環(huán)狀態(tài)了。
回到binder_ioctl函數(shù),由于bwr.read_size == 0,binder_thread_read函數(shù)就不會被執(zhí)行了,這樣,binder_ioctl的任務(wù)就完成了。
回到binder_loop函數(shù),進入for循環(huán):
for (;;) {
bwr.read_size = sizeof(readbuf);
bwr.read_consumed = 0;
bwr.read_buffer = (unsigned) readbuf;
res = ioctl(bs->fd, BINDER_WRITE_READ, &bwr);
if (res < 0) {
LOGE("binder_loop: ioctl failed (%s)\n", strerror(errno));
break;
}
res = binder_parse(bs, 0, readbuf, bwr.read_consumed, func);
if (res == 0) {
LOGE("binder_loop: unexpected reply?!\n");
break;
}
if (res < 0) {
LOGE("binder_loop: io error %d %s\n", res, strerror(errno));
break;
}
}
又是執(zhí)行一個ioctl命令,注意,這里的bwr參數(shù)各個成員的值:
bwr.write_size = 0; bwr.write_consumed = 0; bwr.write_buffer = 0; readbuf[0] = BC_ENTER_LOOPER; bwr.read_size = sizeof(readbuf); bwr.read_consumed = 0; bwr.read_buffer = (unsigned) readbuf;
再次進入到binder_ioctl函數(shù):
static long binder_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
{
int ret;
struct binder_proc *proc = filp->private_data;
struct binder_thread *thread;
unsigned int size = _IOC_SIZE(cmd);
void __user *ubuf = (void __user *)arg;
/*printk(KERN_INFO "binder_ioctl: %d:%d %x %lx\n", proc->pid, current->pid, cmd, arg);*/
ret = wait_event_interruptible(binder_user_error_wait, binder_stop_on_user_error < 2);
if (ret)
return ret;
mutex_lock(&binder_lock);
thread = binder_get_thread(proc);
if (thread == NULL) {
ret = -ENOMEM;
goto err;
}
switch (cmd) {
case BINDER_WRITE_READ: {
struct binder_write_read bwr;
if (size != sizeof(struct binder_write_read)) {
ret = -EINVAL;
goto err;
}
if (copy_from_user(&bwr, ubuf, sizeof(bwr))) {
ret = -EFAULT;
goto err;
}
if (binder_debug_mask & BINDER_DEBUG_READ_WRITE)
printk(KERN_INFO "binder: %d:%d write %ld at %08lx, read %ld at %08lx\n",
proc->pid, thread->pid, bwr.write_size, bwr.write_buffer, bwr.read_size, bwr.read_buffer);
if (bwr.write_size > 0) {
ret = binder_thread_write(proc, thread, (void __user *)bwr.write_buffer, bwr.write_size, &bwr.write_consumed);
if (ret < 0) {
bwr.read_consumed = 0;
if (copy_to_user(ubuf, &bwr, sizeof(bwr)))
ret = -EFAULT;
goto err;
}
}
if (bwr.read_size > 0) {
ret = binder_thread_read(proc, thread, (void __user *)bwr.read_buffer, bwr.read_size, &bwr.read_consumed, filp->f_flags & O_NONBLOCK);
if (!list_empty(&proc->todo))
wake_up_interruptible(&proc->wait);
if (ret < 0) {
if (copy_to_user(ubuf, &bwr, sizeof(bwr)))
ret = -EFAULT;
goto err;
}
}
if (binder_debug_mask & BINDER_DEBUG_READ_WRITE)
printk(KERN_INFO "binder: %d:%d wrote %ld of %ld, read return %ld of %ld\n",
proc->pid, thread->pid, bwr.write_consumed, bwr.write_size, bwr.read_consumed, bwr.read_size);
if (copy_to_user(ubuf, &bwr, sizeof(bwr))) {
ret = -EFAULT;
goto err;
}
break;
}
......
default:
ret = -EINVAL;
goto err;
}
ret = 0;
err:
if (thread)
thread->looper &= ~BINDER_LOOPER_STATE_NEED_RETURN;
mutex_unlock(&binder_lock);
wait_event_interruptible(binder_user_error_wait, binder_stop_on_user_error < 2);
if (ret && ret != -ERESTARTSYS)
printk(KERN_INFO "binder: %d:%d ioctl %x %lx returned %d\n", proc->pid, current->pid, cmd, arg, ret);
return ret;
}
這次,bwr.write_size等于0,于是不會執(zhí)行binder_thread_write函數(shù),bwr.read_size等于32,于是進入到binder_thread_read函數(shù):
[cpp] view plain copy 在CODE上查看代碼片派生到我的代碼片
static int
binder_thread_read(struct binder_proc *proc, struct binder_thread *thread,
void __user *buffer, int size, signed long *consumed, int non_block)
{
void __user *ptr = buffer + *consumed;
void __user *end = buffer + size;
int ret = 0;
int wait_for_proc_work;
if (*consumed == 0) {
if (put_user(BR_NOOP, (uint32_t __user *)ptr))
return -EFAULT;
ptr += sizeof(uint32_t);
}
retry:
wait_for_proc_work = thread->transaction_stack == NULL && list_empty(&thread->todo);
if (thread->return_error != BR_OK && ptr < end) {
if (thread->return_error2 != BR_OK) {
if (put_user(thread->return_error2, (uint32_t __user *)ptr))
return -EFAULT;
ptr += sizeof(uint32_t);
if (ptr == end)
goto done;
thread->return_error2 = BR_OK;
}
if (put_user(thread->return_error, (uint32_t __user *)ptr))
return -EFAULT;
ptr += sizeof(uint32_t);
thread->return_error = BR_OK;
goto done;
}
thread->looper |= BINDER_LOOPER_STATE_WAITING;
if (wait_for_proc_work)
proc->ready_threads++;
mutex_unlock(&binder_lock);
if (wait_for_proc_work) {
if (!(thread->looper & (BINDER_LOOPER_STATE_REGISTERED |
BINDER_LOOPER_STATE_ENTERED))) {
binder_user_error("binder: %d:%d ERROR: Thread waiting "
"for process work before calling BC_REGISTER_"
"LOOPER or BC_ENTER_LOOPER (state %x)\n",
proc->pid, thread->pid, thread->looper);
wait_event_interruptible(binder_user_error_wait, binder_stop_on_user_error < 2);
}
binder_set_nice(proc->default_priority);
if (non_block) {
if (!binder_has_proc_work(proc, thread))
ret = -EAGAIN;
} else
ret = wait_event_interruptible_exclusive(proc->wait, binder_has_proc_work(proc, thread));
} else {
if (non_block) {
if (!binder_has_thread_work(thread))
ret = -EAGAIN;
} else
ret = wait_event_interruptible(thread->wait, binder_has_thread_work(thread));
}
.......
}
傳入的參數(shù)*consumed == 0,于是寫入一個值BR_NOOP到參數(shù)ptr指向的緩沖區(qū)中去,即用戶傳進來的bwr.read_buffer緩沖區(qū)。這時候,thread->transaction_stack == NULL,并且thread->todo列表也是空的,這表示當(dāng)前線程沒有事務(wù)需要處理,于是wait_for_proc_work為true,表示要去查看proc是否有未處理的事務(wù)。當(dāng)前thread->return_error == BR_OK,這是前面創(chuàng)建binder_thread時初始化設(shè)置的。于是繼續(xù)往下執(zhí)行,設(shè)置thread的狀態(tài)為BINDER_LOOPER_STATE_WAITING,表示線程處于等待狀態(tài)。調(diào)用binder_set_nice函數(shù)設(shè)置當(dāng)前線程的優(yōu)先級別為proc->default_priority,這是因為thread要去處理屬于proc的事務(wù),因此要將此thread的優(yōu)先級別設(shè)置和proc一樣。在這個場景中,proc也沒有事務(wù)處理,即binder_has_proc_work(proc, thread)為false。如果文件打開模式為非阻塞模式,即non_block為true,那么函數(shù)就直接返回-EAGAIN,要求用戶重新執(zhí)行ioctl;否則的話,就通過當(dāng)前線程就通過wait_event_interruptible_exclusive函數(shù)進入休眠狀態(tài),等待請求到來再喚醒了。
至此,我們就從源代碼一步一步地分析完Service Manager是如何成為Android進程間通信(IPC)機制Binder守護進程的了。總結(jié)一下,Service Manager是成為Android進程間通信(IPC)機制Binder守護進程的過程是這樣的:
1. 打開/dev/binder文件:open("/dev/binder", O_RDWR);
2. 建立128K內(nèi)存映射:mmap(NULL, mapsize, PROT_READ, MAP_PRIVATE, bs->fd, 0);
3. 通知Binder驅(qū)動程序它是守護進程:binder_become_context_manager(bs);
4. 進入循環(huán)等待請求的到來:binder_loop(bs, svcmgr_handler);
在這個過程中,在Binder驅(qū)動程序中建立了一個struct binder_proc結(jié)構(gòu)、一個struct binder_thread結(jié)構(gòu)和一個struct binder_node結(jié)構(gòu),這樣,Service Manager就在Android系統(tǒng)的進程間通信機制Binder擔(dān)負(fù)起守護進程的職責(zé)了。
- Android系統(tǒng)進程間通信(IPC)機制Binder中的Client獲得Server遠(yuǎn)程接口過程源代碼分析
- Android系統(tǒng)進程間通信(IPC)機制Binder中的Server啟動過程源代碼分析
- Android系統(tǒng)進程間通信(IPC)機制Binder中的Server和Client獲得Service Manager接口之路
- Android進程間通信(IPC)機制Binder簡要介紹
- android IPC之binder通信機制
- Android Binder入門學(xué)習(xí)筆記
- Android中Binder詳細(xì)學(xué)習(xí)心得
- Android通過繼承Binder類實現(xiàn)多進程通信
- 淺談Android IPC機制之Binder的工作機制
相關(guān)文章
Android自定義View的三個構(gòu)造函數(shù)
這篇文章主要介紹了Android自定義View的三個構(gòu)造函數(shù),需要的朋友可以參考下2017-06-06
android中使用Activity實現(xiàn)監(jiān)聽手指上下左右滑動
這篇文章主要介紹了android中使用Activity實現(xiàn)監(jiān)聽手指上下左右滑動,本文使用了Activity的ontouchEvent方法監(jiān)聽手指點擊事件,并給出代碼實例,需要的朋友可以參考下2015-05-05
Android開發(fā)筆記XML數(shù)據(jù)解析方法及優(yōu)缺點
XML數(shù)據(jù)是一種常見的數(shù)據(jù)格式,Android開發(fā)中需要對其進行解析。常用的XML解析方式有DOM、SAX、Pull和Json等,每種方式都有其優(yōu)缺點。開發(fā)者可以根據(jù)具體需求選擇合適的解析方式,提高數(shù)據(jù)解析效率和性能2023-05-05
Android Studio實現(xiàn)帶邊框的圓形頭像
這篇文章主要為大家詳細(xì)介紹了Android Studio實現(xiàn)帶邊框的圓形頭像,文中示例代碼介紹的非常詳細(xì),具有一定的參考價值,感興趣的小伙伴們可以參考一下2017-10-10
Android自定義LinearLayout布局顯示不完整的解決方法
這篇文章主要給大家介紹了關(guān)于Android自定義LinearLayout但布局顯示不完整的解決方法,文中通過示例代碼介紹的非常詳細(xì),對大家具有一定的參考學(xué)習(xí)價值,需要的朋友們下面隨著小編來一起學(xué)習(xí)學(xué)習(xí)吧。2017-11-11
一個簡單的toolabar結(jié)合drawlayout使用方法
這篇文章主要為大家詳細(xì)介紹了一個簡單的toolabar結(jié)合drawlayout的使用方法,具有一定的參考價值,感興趣的小伙伴們可以參考一下2017-10-10
Android判斷軟鍵盤彈出并隱藏的簡單完美解決方法(推薦)
下面小編就為大家?guī)硪黄狝ndroid判斷軟鍵盤彈出并隱藏的簡單完美解決方法(推薦)。小編覺得挺不錯的,現(xiàn)在就分享給大家,也給大家做個參考。一起跟隨小編過來看看吧2016-10-10

