在Python程序中實(shí)現(xiàn)分布式進(jìn)程的教程
在Thread和Process中,應(yīng)當(dāng)優(yōu)選Process,因?yàn)镻rocess更穩(wěn)定,而且,Process可以分布到多臺(tái)機(jī)器上,而Thread最多只能分布到同一臺(tái)機(jī)器的多個(gè)CPU上。
Python的multiprocessing模塊不但支持多進(jìn)程,其中managers子模塊還支持把多進(jìn)程分布到多臺(tái)機(jī)器上。一個(gè)服務(wù)進(jìn)程可以作為調(diào)度者,將任務(wù)分布到其他多個(gè)進(jìn)程中,依靠網(wǎng)絡(luò)通信。由于managers模塊封裝很好,不必了解網(wǎng)絡(luò)通信的細(xì)節(jié),就可以很容易地編寫分布式多進(jìn)程程序。
舉個(gè)例子:如果我們已經(jīng)有一個(gè)通過Queue通信的多進(jìn)程程序在同一臺(tái)機(jī)器上運(yùn)行,現(xiàn)在,由于處理任務(wù)的進(jìn)程任務(wù)繁重,希望把發(fā)送任務(wù)的進(jìn)程和處理任務(wù)的進(jìn)程分布到兩臺(tái)機(jī)器上。怎么用分布式進(jìn)程實(shí)現(xiàn)?
原有的Queue可以繼續(xù)使用,但是,通過managers模塊把Queue通過網(wǎng)絡(luò)暴露出去,就可以讓其他機(jī)器的進(jìn)程訪問Queue了。
我們先看服務(wù)進(jìn)程,服務(wù)進(jìn)程負(fù)責(zé)啟動(dòng)Queue,把Queue注冊(cè)到網(wǎng)絡(luò)上,然后往Queue里面寫入任務(wù):
# taskmanager.py
import random, time, Queue
from multiprocessing.managers import BaseManager
# 發(fā)送任務(wù)的隊(duì)列:
task_queue = Queue.Queue()
# 接收結(jié)果的隊(duì)列:
result_queue = Queue.Queue()
# 從BaseManager繼承的QueueManager:
class QueueManager(BaseManager):
pass
# 把兩個(gè)Queue都注冊(cè)到網(wǎng)絡(luò)上, callable參數(shù)關(guān)聯(lián)了Queue對(duì)象:
QueueManager.register('get_task_queue', callable=lambda: task_queue)
QueueManager.register('get_result_queue', callable=lambda: result_queue)
# 綁定端口5000, 設(shè)置驗(yàn)證碼'abc':
manager = QueueManager(address=('', 5000), authkey='abc')
# 啟動(dòng)Queue:
manager.start()
# 獲得通過網(wǎng)絡(luò)訪問的Queue對(duì)象:
task = manager.get_task_queue()
result = manager.get_result_queue()
# 放幾個(gè)任務(wù)進(jìn)去:
for i in range(10):
n = random.randint(0, 10000)
print('Put task %d...' % n)
task.put(n)
# 從result隊(duì)列讀取結(jié)果:
print('Try get results...')
for i in range(10):
r = result.get(timeout=10)
print('Result: %s' % r)
# 關(guān)閉:
manager.shutdown()
請(qǐng)注意,當(dāng)我們?cè)谝慌_(tái)機(jī)器上寫多進(jìn)程程序時(shí),創(chuàng)建的Queue可以直接拿來用,但是,在分布式多進(jìn)程環(huán)境下,添加任務(wù)到Queue不可以直接對(duì)原始的task_queue進(jìn)行操作,那樣就繞過了QueueManager的封裝,必須通過manager.get_task_queue()獲得的Queue接口添加。
然后,在另一臺(tái)機(jī)器上啟動(dòng)任務(wù)進(jìn)程(本機(jī)上啟動(dòng)也可以):
# taskworker.py
import time, sys, Queue
from multiprocessing.managers import BaseManager
# 創(chuàng)建類似的QueueManager:
class QueueManager(BaseManager):
pass
# 由于這個(gè)QueueManager只從網(wǎng)絡(luò)上獲取Queue,所以注冊(cè)時(shí)只提供名字:
QueueManager.register('get_task_queue')
QueueManager.register('get_result_queue')
# 連接到服務(wù)器,也就是運(yùn)行taskmanager.py的機(jī)器:
server_addr = '127.0.0.1'
print('Connect to server %s...' % server_addr)
# 端口和驗(yàn)證碼注意保持與taskmanager.py設(shè)置的完全一致:
m = QueueManager(address=(server_addr, 5000), authkey='abc')
# 從網(wǎng)絡(luò)連接:
m.connect()
# 獲取Queue的對(duì)象:
task = m.get_task_queue()
result = m.get_result_queue()
# 從task隊(duì)列取任務(wù),并把結(jié)果寫入result隊(duì)列:
for i in range(10):
try:
n = task.get(timeout=1)
print('run task %d * %d...' % (n, n))
r = '%d * %d = %d' % (n, n, n*n)
time.sleep(1)
result.put(r)
except Queue.Empty:
print('task queue is empty.')
# 處理結(jié)束:
print('worker exit.')
任務(wù)進(jìn)程要通過網(wǎng)絡(luò)連接到服務(wù)進(jìn)程,所以要指定服務(wù)進(jìn)程的IP。
現(xiàn)在,可以試試分布式進(jìn)程的工作效果了。先啟動(dòng)taskmanager.py服務(wù)進(jìn)程:
$ python taskmanager.py Put task 3411... Put task 1605... Put task 1398... Put task 4729... Put task 5300... Put task 7471... Put task 68... Put task 4219... Put task 339... Put task 7866... Try get results...
taskmanager進(jìn)程發(fā)送完任務(wù)后,開始等待result隊(duì)列的結(jié)果?,F(xiàn)在啟動(dòng)taskworker.py進(jìn)程:
$ python taskworker.py 127.0.0.1 Connect to server 127.0.0.1... run task 3411 * 3411... run task 1605 * 1605... run task 1398 * 1398... run task 4729 * 4729... run task 5300 * 5300... run task 7471 * 7471... run task 68 * 68... run task 4219 * 4219... run task 339 * 339... run task 7866 * 7866... worker exit.
taskworker進(jìn)程結(jié)束,在taskmanager進(jìn)程中會(huì)繼續(xù)打印出結(jié)果:
Result: 3411 * 3411 = 11634921 Result: 1605 * 1605 = 2576025 Result: 1398 * 1398 = 1954404 Result: 4729 * 4729 = 22363441 Result: 5300 * 5300 = 28090000 Result: 7471 * 7471 = 55815841 Result: 68 * 68 = 4624 Result: 4219 * 4219 = 17799961 Result: 339 * 339 = 114921 Result: 7866 * 7866 = 61873956
這個(gè)簡(jiǎn)單的Manager/Worker模型有什么用?其實(shí)這就是一個(gè)簡(jiǎn)單但真正的分布式計(jì)算,把代碼稍加改造,啟動(dòng)多個(gè)worker,就可以把任務(wù)分布到幾臺(tái)甚至幾十臺(tái)機(jī)器上,比如把計(jì)算n*n的代碼換成發(fā)送郵件,就實(shí)現(xiàn)了郵件隊(duì)列的異步發(fā)送。
Queue對(duì)象存儲(chǔ)在哪?注意到taskworker.py中根本沒有創(chuàng)建Queue的代碼,所以,Queue對(duì)象存儲(chǔ)在taskmanager.py進(jìn)程中:

而Queue之所以能通過網(wǎng)絡(luò)訪問,就是通過QueueManager實(shí)現(xiàn)的。由于QueueManager管理的不止一個(gè)Queue,所以,要給每個(gè)Queue的網(wǎng)絡(luò)調(diào)用接口起個(gè)名字,比如get_task_queue。
authkey有什么用?這是為了保證兩臺(tái)機(jī)器正常通信,不被其他機(jī)器惡意干擾。如果taskworker.py的authkey和taskmanager.py的authkey不一致,肯定連接不上。
小結(jié)
Python的分布式進(jìn)程接口簡(jiǎn)單,封裝良好,適合需要把繁重任務(wù)分布到多臺(tái)機(jī)器的環(huán)境下。
注意Queue的作用是用來傳遞任務(wù)和接收結(jié)果,每個(gè)任務(wù)的描述數(shù)據(jù)量要盡量小。比如發(fā)送一個(gè)處理日志文件的任務(wù),就不要發(fā)送幾百兆的日志文件本身,而是發(fā)送日志文件存放的完整路徑,由Worker進(jìn)程再去共享的磁盤上讀取文件。
相關(guān)文章
Python+騰訊云服務(wù)器實(shí)現(xiàn)每日自動(dòng)健康打卡
本文主要介紹了通過Python+騰訊云服務(wù)器實(shí)現(xiàn)每日自動(dòng)健康打卡,文中通過示例代碼介紹的非常詳細(xì),對(duì)大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價(jià)值,需要的朋友們下面隨著小編來一起學(xué)習(xí)學(xué)習(xí)吧2021-12-12
Python讀取大型數(shù)據(jù)文件的6種方式匯總
在 Python 中,我們可以使用多種方法讀取大型數(shù)據(jù)文件,本文主要為大家介紹6個(gè)常用的Python讀取大型數(shù)據(jù)文件的方法,希望對(duì)大家有所幫助2023-05-05
python中的標(biāo)準(zhǔn)庫(kù)html
html庫(kù)是用于解析HTML的一個(gè)工具,是python自帶的標(biāo)準(zhǔn)庫(kù)之一,今天通過本文給大家介紹下python中的標(biāo)準(zhǔn)庫(kù)html,感興趣的朋友一起看看吧2022-04-04
Python排序方法中sort和sorted的區(qū)別詳解
在python中常用的排序函數(shù)就是sort()和sorted()這兩個(gè)函數(shù),使用 sort() 或內(nèi)建函數(shù) sorted() 對(duì)列表進(jìn)行排序,本文將詳細(xì)介紹sorted和sort兩者之間的區(qū)別,感興趣的可以了解一下2023-08-08
Python讀取mat(matlab數(shù)據(jù)文件)并實(shí)現(xiàn)畫圖
這篇文章主要介紹了Python讀取mat(matlab數(shù)據(jù)文件)并實(shí)現(xiàn)畫圖問題,具有很好的參考價(jià)值,希望對(duì)大家有所幫助。如有錯(cuò)誤或未考慮完全的地方,望不吝賜教2022-12-12
Python?selenium?get_cookies獲取cookie不全的解決方案
之前使用爬蟲時(shí)最讓我頭疼的就是cookie失效的問題了,下面這篇文章主要給大家介紹了關(guān)于Python?selenium?get_cookies獲取cookie不全的解決方案,需要的朋友可以參考下2022-10-10
python使用jenkins發(fā)送企業(yè)微信通知的實(shí)現(xiàn)
公司使用的是企業(yè)微信,因此考慮Jenkins通知企業(yè)微信機(jī)器人的實(shí)現(xiàn)方式,本文主要介紹了python使用jenkins發(fā)送企業(yè)微信通知的實(shí)現(xiàn),感興趣的可以了解一下2021-06-06

