使用python繪制人人網(wǎng)好友關(guān)系圖示例
代碼依賴:networkx matplotlib
#! /bin/env python
# -*- coding: utf-8 -*-
import urllib
import urllib2
import cookielib
import re
import cPickle as p
import networkx as nx
import matplotlib.pyplot as plt
__author__ = """Reverland (lhtlyy@gmail.com)"""
# Control parameters,EDIT it here
## Login
username = 'None'
password = 'None'
## Control Graphs, Edit for better graphs as you need
label_flag = True # Whether shows labels.NOTE: configure your matplotlibrc for Chinese characters.
remove_isolated = True # Whether remove isolated nodes(less than iso_level connects)
different_size = True # Nodes for different size, bigger means more shared friends
iso_level = 10
node_size = 40 # Default node size
def login(username, password):
"""log in and return uid"""
logpage = "http://www.renren.com/ajaxLogin/login"
data = {'email': username, 'password': password}
login_data = urllib.urlencode(data)
cj = cookielib.CookieJar()
opener = urllib2.build_opener(urllib2.HTTPCookieProcessor(cj))
urllib2.install_opener(opener)
res = opener.open(logpage, login_data)
print "Login now ..."
html = res.read()
#print html
# Get uid
print "Getting user id of you now"
res = urllib2.urlopen("http://www.renren.com/home")
html = res.read()
# print html
uid = re.search("'ruid':'(\\d+)'", html).group(1)
# print uid
print "Login and got uid successfully"
return uid
def getfriends(uid):
"""Get the uid's friends and return the dict with uid as key,name as value."""
print "Get %s 's friend list" % str(uid)
pagenum = 0
dict1 = {}
while True:
targetpage = "http://friend.renren.com/GetFriendList.do?curpage=" + str(pagenum) + "&id=" + str(uid)
res = urllib2.urlopen(targetpage)
html = res.read()
pattern = '<a href="http://www\\.renren\\.com/profile\\.do\\?id=(\\d+)"><img src="[\\S]*" alt="[\\S]*[\\s]\\((.*)\\)" />'
m = re.findall(pattern, html)
#print len(m)
if len(m) == 0:
break
for i in range(0, len(m)):
no = m[i][0]
uname = m[i][1]
#print uname, no
dict1[no] = uname
pagenum += 1
print "Got %s 's friends list successfully." % str(uid)
return dict1
def getdict(uid):
"""cache dict of uid in the disk."""
try:
with open(str(uid) + '.txt', 'r') as f:
dict_uid = p.load(f)
except:
with open(str(uid) + '.txt', 'w') as f:
p.dump(getfriends(uid), f)
dict_uid = getdict(uid)
return dict_uid
def getrelations(uid1, uid2):
"""receive two user id, If they are friends, return 1, otherwise 0."""
dict_uid1 = getdict(uid1)
if uid2 in dict_uid1:
return 1
else:
return 0
def getgraph(username, password):
"""Get the Graph Object and return it.
You must specify a Chinese font such as `SimHei` in ~/.matplotlib/matplotlibrc"""
uid = login(username, password)
dict_root = getdict(uid) # Get root tree
G = nx.Graph() # Create a Graph object
for uid1, uname1 in dict_root.items():
# Encode Chinese characters for matplotlib **IMPORTANT**
# if you want to draw Chinese labels,
uname1 = unicode(uname1, 'utf8')
G.add_node(uname1)
for uid2, uname2 in dict_root.items():
uname2 = unicode(uname2, 'utf8')
# Not necessary for networkx
if uid2 == uid1:
continue
if getrelations(uid1, uid2):
G.add_edge(uname1, uname2)
return G
def draw_graph(username, password, filename='graph.txt', label_flag=True, remove_isolated=True, different_size=True, iso_level=10, node_size=40):
"""Reading data from file and draw the graph.If not exists, create the file and re-scratch data from net"""
print "Generating graph..."
try:
with open(filename, 'r') as f:
G = p.load(f)
except:
G = getgraph(username, password)
with open(filename, 'w') as f:
p.dump(G, f)
#nx.draw(G)
# Judge whether remove the isolated point from graph
if remove_isolated is True:
H = nx.empty_graph()
for SG in nx.connected_component_subgraphs(G):
if SG.number_of_nodes() > iso_level:
H = nx.union(SG, H)
G = H
# Ajust graph for better presentation
if different_size is True:
L = nx.degree(G)
G.dot_size = {}
for k, v in L.items():
G.dot_size[k] = v
node_size = [G.dot_size[v] * 10 for v in G]
pos = nx.spring_layout(G, iterations=50)
nx.draw_networkx_edges(G, pos, alpha=0.2)
nx.draw_networkx_nodes(G, pos, node_size=node_size, node_color='r', alpha=0.3)
# Judge whether shows label
if label_flag is True:
nx.draw_networkx_labels(G, pos, alpha=0.5)
#nx.draw_graphviz(G)
plt.show()
return G
if __name__ == "__main__":
G = draw_graph(username, password)
相關(guān)文章
OpenCV python sklearn隨機(jī)超參數(shù)搜索的實(shí)現(xiàn)
這篇文章主要介紹了OpenCV python sklearn隨機(jī)超參數(shù)搜索的實(shí)現(xiàn),文中通過示例代碼介紹的非常詳細(xì),對大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價(jià)值,需要的朋友們下面隨著小編來一起學(xué)習(xí)學(xué)習(xí)吧2020-01-01
CentOS 6.X系統(tǒng)下升級Python2.6到Python2.7 的方法
今天到新公司發(fā)現(xiàn)用的CentOS 6.X系統(tǒng),默認(rèn)安裝的Python是2.6版本,可是我的程序引用的部分庫需要2.7版本或以上,所以只能升級Python到2.7版本了,現(xiàn)在將升級的步驟分享給大家,有需要的朋友們可以參考借鑒。2016-10-10
詳解Golang 與python中的字符串反轉(zhuǎn)
這篇文章主要介紹了詳解Golang 與python中的字符串反轉(zhuǎn)的相關(guān)資料,這里提供了實(shí)現(xiàn)的實(shí)例以便大家學(xué)習(xí)理解,需要的朋友可以參考下2017-07-07
Win10操作系統(tǒng)中PyTorch虛擬環(huán)境配置+PyCharm配置
本文主要介紹了Win10操作系統(tǒng)中PyTorch虛擬環(huán)境配置+PyCharm配置,文中通過示例代碼介紹的非常詳細(xì),具有一定的參考價(jià)值,感興趣的小伙伴們可以參考一下2021-09-09
python BitMap算法處理20億隨機(jī)整數(shù)去重
這篇文章主要為大家介紹了python BitMap算法處理20億隨機(jī)整數(shù)去重,有需要的朋友可以借鑒參考下,希望能夠有所幫助,祝大家多多進(jìn)步,早日升職加薪2024-01-01
Python pyecharts實(shí)現(xiàn)繪制中國地圖的實(shí)例詳解
pyecharts是一個(gè)用于生成 Echarts 圖表的類庫。Echarts 是百度開源的一個(gè)數(shù)據(jù)可視化 JS 庫。用 Echarts 生成的圖可視化效果非常棒。本文將通過pyecharts繪制中國地圖,需要的可以學(xué)習(xí)一下2022-01-01
PyTorch上實(shí)現(xiàn)卷積神經(jīng)網(wǎng)絡(luò)CNN的方法
本篇文章主要介紹了PyTorch上實(shí)現(xiàn)卷積神經(jīng)網(wǎng)絡(luò)CNN的方法,小編覺得挺不錯(cuò)的,現(xiàn)在分享給大家,也給大家做個(gè)參考。一起跟隨小編過來看看吧2018-04-04
python機(jī)器學(xué)習(xí)樸素貝葉斯算法及模型的選擇和調(diào)優(yōu)詳解
這篇文章主要為大家介紹了python機(jī)器學(xué)習(xí)樸素貝葉斯及模型的選擇和調(diào)優(yōu)示例詳解,有需要的朋友可以借鑒參考下,希望能夠有所幫助,祝大家多多進(jìn)步2021-11-11

