mysql實(shí)現(xiàn)本地keyvalue數(shù)據(jù)庫緩存示例
Key-Value緩存有很多,用的較多的是memcache、redis,他們都是以獨(dú)立服務(wù)的形式運(yùn)行,在工作中有時(shí)需要嵌入一個(gè)本地的key-value緩存,當(dāng)然已經(jīng)有LevelDb等,但感覺還是太重量級(jí)了。
本文實(shí)現(xiàn)了一種超級(jí)輕量的緩存,
1、實(shí)現(xiàn)代碼僅僅需要400行;
2、性能高效,value長度在1K時(shí)測(cè)試速度在每秒200萬左右
3、緩存是映射到文件中的,所以沒有malloc、free的開銷,以及帶來的內(nèi)存泄露、內(nèi)存碎片等;
4、如果服務(wù)掛掉了,重啟后緩存內(nèi)容繼續(xù)存在;
5、如果把緩存映射到磁盤文件就算機(jī)器掛了,緩存中內(nèi)容還是會(huì)存在,當(dāng)然有可能會(huì)出現(xiàn)數(shù)據(jù)損壞的情況;
6、一定程度上實(shí)現(xiàn)了LRU淘汰算法,實(shí)現(xiàn)的LRU不是全局的只是一條鏈上的,所以只能說在一定程序上實(shí)現(xiàn)了;
7、穩(wěn)定,已經(jīng)在多個(gè)項(xiàng)目中運(yùn)用,線上部署的機(jī)器有幾十臺(tái),運(yùn)行了大半年了沒出過問題;
8、普通的緩存key、value都是字符串的形式,此緩存的key、value都可以是class、struct對(duì)象結(jié)構(gòu)使用更方便;
老規(guī)矩直接上代碼:
template<typename K, typename V>
class HashTable
{
public:
HashTable(const char *tablename, uint32_t tableLen, uint32_t nodeTotal);
virtual ~HashTable();
bool Add(K &key, V &value)
{
AutoLock autoLock(m_MutexLock);
//check is exist
uint32_t nodeId = GetIdByKey(key);
if(nodeId != m_InvalidId) return false;
nodeId = GetFreeNode();
if(nodeId == m_InvalidId) return false;
uint32_t hashCode = key.HashCode();
Entry *tmpNode = m_EntryAddr + nodeId;
tmpNode->m_Key = key;
tmpNode->m_Code = hashCode;
tmpNode->m_Value = value;
uint32_t index = hashCode % m_HeadAddr->m_TableLen;
AddNodeToHead(index, nodeId);
return true;
}
bool Del(K &key)
{
AutoLock autoLock(m_MutexLock);
uint32_t nodeId = GetIdByKey(key);
if(nodeId == m_InvalidId) return false;
uint32_t index = key.HashCode() % m_HeadAddr->m_TableLen;
return RecycleNode(index, nodeId);
}
bool Set(K &key, V &value)
{
AutoLock autoLock(m_MutexLock);
uint32_t nodeId = GetIdByKey(key);
if(nodeId == m_InvalidId) return false;
(m_EntryAddr + nodeId)->m_Value = value;
return true;
}
bool Get(K &key, V &value)
{
AutoLock autoLock(m_MutexLock);
uint32_t nodeId = GetIdByKey(key);
if(nodeId == m_InvalidId) return false;
value = (m_EntryAddr + nodeId)->m_Value;
return true;
}
bool Exist(K &key)
{
AutoLock autoLock(m_MutexLock);
uint32_t nodeId = GetIdByKey(key);
if(nodeId == m_InvalidId) return false;
return true;
}
uint32_t Count()
{
AutoLock autoLock(m_MutexLock);
return m_HeadAddr->m_UsedCount;
}
//if exist set else add
bool Replace(K &key, V &value)
{
AutoLock autoLock(m_MutexLock);
if(Exist(key)) return Set(key, value);
else return Add(key, value);
}
/***********************************************
****LRU: when visit a node, move it to head ****
************************************************/
//if no empty place,recycle tail
bool LruAdd(K &key, V &value, K &recyKey, V &recyValue, bool &recycled)
{
AutoLock autoLock(m_MutexLock);
if(Exist(key)) return false;
if(Add(key, value)) return true;
uint32_t index = key.HashCode() % m_HeadAddr->m_TableLen;
uint32_t tailId = GetTailNodeId(index);
if(tailId == m_InvalidId) return false;
Entry *tmpNode = m_EntryAddr + tailId;
recyKey = tmpNode->m_Key;
recyValue = tmpNode->m_Value;
recycled = true;
RecycleNode(index, tailId);
return Add(key, value);
}
bool LruSet(K &key, V &value)
{
AutoLock autoLock(m_MutexLock);
if(Set(key, value)) return MoveToHead(key);
else return false;
}
bool LruGet(K &key, V &value)
{
AutoLock autoLock(m_MutexLock);
if(Get(key, value)) return MoveToHead(key);
else return false;
}
//if exist set else add; if add failed recycle tail than add
bool LruReplace(K &key, V &value, K &recyKey, V &recyValue, bool &recycled)
{
AutoLock autoLock(m_MutexLock);
recycled = false;
if(Exist(key)) return LruSet(key, value);
else return LruAdd(key, value, recyKey, recyValue, recycled);
}
void Clear()
{
AutoLock autoLock(m_MutexLock);
m_HeadAddr->m_FreeBase = 0;
m_HeadAddr->m_RecycleHead = 0;
m_HeadAddr->m_UsedCount = 0;
for(uint32_t i = 0; i < m_HeadAddr->m_TableLen; ++i)
{
(m_ArrayAddr+i)->m_Head = m_InvalidId;
(m_ArrayAddr+i)->m_Tail = m_InvalidId;
}
}
int GetRowKeys(vector<K> &keys, uint32_t index)
{
AutoLock autoLock(m_MutexLock);
if(index >= m_HeadAddr->m_TableLen) return -1;
keys.clear();
keys.reserve(16);
int count = 0;
Array *tmpArray = m_ArrayAddr + index;
uint32_t nodeId = tmpArray->m_Head;
while(nodeId != m_InvalidId)
{
Entry *tmpNode = m_EntryAddr + nodeId;
keys.push_back(tmpNode->m_Key);
nodeId = tmpNode->m_Next;
++count;
}
return count;
}
void *Padding(uint32_t size)
{
AutoLock autoLock(m_MutexLock);
if(size > m_HeadSize - sizeof(TableHead)) return NULL;
else return m_HeadAddr->m_Padding;
}
private:
static const uint32_t m_InvalidId = 0xffffffff;
static const uint32_t m_HeadSize = 1024;
struct TableHead
{
uint32_t m_TableLen;
uint32_t m_NodeTotal;
uint32_t m_FreeBase;
uint32_t m_RecycleHead;
uint32_t m_UsedCount;
char m_TableName[256];
uint32_t m_Padding[0];
};
struct Array
{
uint32_t m_Head;
uint32_t m_Tail;
};
struct Entry
{
V m_Value;
K m_Key;
uint32_t m_Code;
uint32_t m_Next;
uint32_t m_Prev;
};
size_t m_MemSize;
uint8_t *m_MemAddr;
TableHead *m_HeadAddr;
Array *m_ArrayAddr;
Entry *m_EntryAddr;
ThreadMutex m_MutexLock;
bool MoveToHead(K &key);
uint32_t GetIdByKey(K &key);
void AddNodeToHead(uint32_t index, uint32_t nodeId);
bool MoveNodeToHead(uint32_t index, uint32_t nodeId);
bool RecycleNode(uint32_t index, uint32_t nodeId);
uint32_t GetTailNodeId(uint32_t index);
uint32_t GetFreeNode();
DISABLE_COPY_AND_ASSIGN(HashTable);
};
template<typename K, typename V>
HashTable<K, V>::HashTable(const char *tablename, uint32_t tableLen, uint32_t nodeTotal)
{
AbortAssert(tablename != NULL);
m_MemSize = m_HeadSize + tableLen*sizeof(Array) + nodeTotal*sizeof(Entry);
m_MemAddr = (uint8_t*)MemFile::Realloc(tablename, m_MemSize);
AbortAssert(m_MemAddr != NULL);
m_HeadAddr = (TableHead*)(m_MemAddr);
m_ArrayAddr = (Array*)(m_MemAddr + m_HeadSize);
m_EntryAddr = (Entry*)(m_MemAddr + m_HeadSize + tableLen*sizeof(Array));
m_HeadAddr->m_TableLen = tableLen;
m_HeadAddr->m_NodeTotal = nodeTotal;
strncpy(m_HeadAddr->m_TableName, tablename, sizeof(m_HeadAddr->m_TableName));
if(m_HeadAddr->m_UsedCount == 0)//if first use init array to invalid id
{
for(uint32_t i = 0; i < tableLen; ++i)
{
(m_ArrayAddr+i)->m_Head = m_InvalidId;
(m_ArrayAddr+i)->m_Tail = m_InvalidId;
}
m_HeadAddr->m_FreeBase = 0;
m_HeadAddr->m_RecycleHead = 0;
}
}
template<typename K, typename V>
HashTable<K, V>::~HashTable()
{
MemFile::Release(m_MemAddr, m_MemSize);
}
template<typename K, typename V>
bool HashTable<K, V>::MoveToHead(K &key)
{
uint32_t nodeId = GetIdByKey(key);
uint32_t index = key.HashCode() % m_HeadAddr->m_TableLen;
return MoveNodeToHead(index, nodeId);
}
template<typename K, typename V>
uint32_t HashTable<K, V>::GetIdByKey(K &key)
{
uint32_t hashCode = key.HashCode();
uint32_t index = hashCode % m_HeadAddr->m_TableLen;
Array *tmpArray = m_ArrayAddr + index;
uint32_t nodeId = tmpArray->m_Head;
while(nodeId != m_InvalidId)
{
Entry *tmpNode = m_EntryAddr + nodeId;
if(tmpNode->m_Code == hashCode && key.Equals(tmpNode->m_Key)) break;
nodeId = tmpNode->m_Next;
}
return nodeId;
}
template<typename K, typename V>
void HashTable<K, V>::AddNodeToHead(uint32_t index, uint32_t nodeId)
{
if(index >= m_HeadAddr->m_TableLen || nodeId >= m_HeadAddr->m_NodeTotal) return;
Array *tmpArray = m_ArrayAddr + index;
Entry *tmpNode = m_EntryAddr + nodeId;
if(m_InvalidId == tmpArray->m_Head)
{
tmpArray->m_Head = nodeId;
tmpArray->m_Tail = nodeId;
}
else
{
tmpNode->m_Next = tmpArray->m_Head;
(m_EntryAddr + tmpArray->m_Head)->m_Prev = nodeId;
tmpArray->m_Head = nodeId;
}
}
template<typename K, typename V>
bool HashTable<K, V>::MoveNodeToHead(uint32_t index, uint32_t nodeId)
{
if(index >= m_HeadAddr->m_TableLen || nodeId >= m_HeadAddr->m_NodeTotal) return false;
Array *tmpArray = m_ArrayAddr + index;
Entry *tmpNode = m_EntryAddr + nodeId;
//already head
if(tmpArray->m_Head == nodeId)
{
return true;
}
uint32_t nodePrev = tmpNode->m_Prev;
uint32_t nodeNext = tmpNode->m_Next;
(m_EntryAddr+nodePrev)->m_Next = nodeNext;
if(nodeNext != m_InvalidId)
{
(m_EntryAddr+nodeNext)->m_Prev = nodePrev;
}
else
{
tmpArray->m_Tail = nodePrev;
}
tmpNode->m_Prev = m_InvalidId;
tmpNode->m_Next = tmpArray->m_Head;
(m_EntryAddr + tmpArray->m_Head)->m_Prev = nodeId;
tmpArray->m_Head = nodeId;
return true;
}
template<typename K, typename V>
bool HashTable<K, V>::RecycleNode(uint32_t index, uint32_t nodeId)
{
if(index >= m_HeadAddr->m_TableLen || nodeId >= m_HeadAddr->m_NodeTotal) return false;
Array *tmpArray = m_ArrayAddr + index;
Entry *tmpNode = m_EntryAddr + nodeId;
uint32_t nodePrev = tmpNode->m_Prev;
uint32_t nodeNext = tmpNode->m_Next;
if(nodePrev != m_InvalidId)
{
(m_EntryAddr + nodePrev)->m_Next = nodeNext;
}
else
{
tmpArray->m_Head = nodeNext;
}
if(nodeNext != m_InvalidId)
{
(m_EntryAddr + nodeNext)->m_Prev = nodePrev;
}
else
{
tmpArray->m_Tail = nodePrev;
}
(m_EntryAddr+nodeId)->m_Next = m_HeadAddr->m_RecycleHead;
m_HeadAddr->m_RecycleHead = nodeId;
--(m_HeadAddr->m_UsedCount);
return true;
}
template<typename K, typename V>
uint32_t HashTable<K, V>::GetTailNodeId(uint32_t index)
{
if(index >= m_HeadAddr->m_TableLen) return m_InvalidId;
Array *tmpArray = m_ArrayAddr + index;
return tmpArray->m_Tail;
}
template<typename K, typename V>
uint32_t HashTable<K, V>::GetFreeNode()
{
uint32_t nodeId = m_InvalidId;
if(m_HeadAddr->m_UsedCount < m_HeadAddr->m_FreeBase)//get from recycle list
{
nodeId = m_HeadAddr->m_RecycleHead;
m_HeadAddr->m_RecycleHead = (m_EntryAddr+nodeId)->m_Next;
++(m_HeadAddr->m_UsedCount);
}
else if(m_HeadAddr->m_UsedCount < m_HeadAddr->m_NodeTotal)//get from free mem
{
nodeId = m_HeadAddr->m_FreeBase;
++(m_HeadAddr->m_FreeBase);
++(m_HeadAddr->m_UsedCount);
}
else
{
nodeId = m_InvalidId;
}
//init node
if(nodeId < m_HeadAddr->m_NodeTotal)
{
Entry *tmpNode = m_EntryAddr + nodeId;
memset(tmpNode, 0, sizeof(Entry));
tmpNode->m_Next = m_InvalidId;
tmpNode->m_Prev = m_InvalidId;
}
return nodeId;
}
- 深入分析緩存依賴中cachedependency對(duì)象及周邊小講
- asp.net開發(fā)中怎樣去突破文件依賴緩存
- 開啟SQLSERVER數(shù)據(jù)庫緩存依賴優(yōu)化網(wǎng)站性能
- SQL Server 高速緩存依賴分析
- 使用Memcache緩存mysql數(shù)據(jù)庫操作的原理和緩存過程淺析
- asp.net 備份和恢復(fù)數(shù)據(jù)庫的方法示例
- asp.net連接數(shù)據(jù)庫讀取數(shù)據(jù)示例分享
- asp.net 通用的連接數(shù)據(jù)庫實(shí)例代碼
- ASP.NET數(shù)據(jù)庫緩存依賴實(shí)例分析
相關(guān)文章
mysql Community Server 5.7.19安裝指南(詳細(xì))
這篇文章主要介紹了mysql Community Server 5.7.19安裝指南(詳細(xì)),需要的朋友可以參考下2017-10-10
VMWare linux mysql 5.7.13安裝配置教程
這篇文章主要為大家詳細(xì)介紹了VMWare linux mysql 5.7.13安裝配置教程,具有一定的參考價(jià)值,感興趣的小伙伴們可以參考一下2017-05-05
Mysql中報(bào)錯(cuò)函數(shù)floor()函數(shù)和rand()函數(shù)的配合使用及原理詳解
在項(xiàng)目中的SQL語句中遇到幾個(gè)數(shù)值處理函數(shù),看著有些懵,就小小的總結(jié)一下,這篇文章主要給大家介紹了關(guān)于Mysql中報(bào)錯(cuò)函數(shù)floor()函數(shù)和rand()函數(shù)的配合使用及原理的相關(guān)資料,需要的朋友可以參考下2022-07-07
運(yùn)維角度淺談MySQL數(shù)據(jù)庫優(yōu)化(李振良)
一個(gè)成熟的數(shù)據(jù)庫架構(gòu)并不是一開始設(shè)計(jì)就具備高可用、高伸縮等特性的,它是隨著用戶量的增加,基礎(chǔ)架構(gòu)才逐漸完善。這篇博文主要談MySQL數(shù)據(jù)庫發(fā)展周期中所面臨的問題及優(yōu)化方案2015-07-07
navicat不能創(chuàng)建函數(shù)解決方法分享
這篇文章主要介紹了navicat不能創(chuàng)建函數(shù)解決方法分享,小編覺得還是挺不錯(cuò)的,這里分享給大家,供需要的朋友參考。2017-10-10
MySQL的分區(qū)表使用場(chǎng)景及示例小結(jié)
MySQL的分區(qū)表功能在某些場(chǎng)景下可以顯著提高查詢效率,本文主要介紹了MySQL的分區(qū)表使用場(chǎng)景及示例小結(jié),具有一定的參考價(jià)值,感興趣的可以了解一下2024-06-06
mysql中替代null的IFNULL()與COALESCE()函數(shù)詳解
這篇文章主要給大家介紹了關(guān)于mysql中替代null的IFNULL()與COALESCE()函數(shù)的相關(guān)資料,文中通過示例代碼介紹的非常詳細(xì),對(duì)大家具有一定的參考學(xué)習(xí)價(jià)值,需要的朋友們下面來一起看看看吧。2017-06-06

