解讀等值線圖的Python繪制方法
等值線圖的Python繪制方法
等值線圖或等高線圖在科學(xué)界經(jīng)常用到,它是由一些封閉的曲線組成的,來(lái)表示三維結(jié)構(gòu)表面。
雖然看起來(lái)復(fù)雜,其實(shí)用matplotlib實(shí)現(xiàn)起來(lái)并不難。
代碼如下:
import numpy as np
import matplotlib.pyplot as plt
dx=0.01;dy=0.01
x=np.arange(-2.0,2.0,dx)
y=np.arange(-2.0,2.0,dy)
X,Y=np.meshgrid(x,y)
def f(x,y):
return(1-y**5+x**5)*np.exp(-x**2-y**2)
C=plt.contour(X,Y,f(X,Y),8,colors='black') #生成等值線圖
plt.contourf(X,Y,f(X,Y),8)
plt.clable(C,inline=1,fontsize=10)
結(jié)果如下:

使用等值線圖,在圖的一側(cè)增加圖例作為圖表中所用顏色的說(shuō)明幾乎是必需的,在上述代碼最后增加colorbar()函數(shù)就可以實(shí)現(xiàn)。
plt.colorbar()

python等值線圖繪制,計(jì)算合適的等值線間距
python按照給定坐標(biāo)點(diǎn)進(jìn)行插值并繪制等值線圖
import matplotlib.pyplot as plt
import numpy as np
import math
import pandas as pd
import io
import copy
def get_gap(gap):
gap = str(gap)
gap_len = len(gap)
gap_list = list(map(int, gap))
top_value = int(gap_list[0])
gap_bottom = top_value * (10 ** (gap_len - 1))
gap_mid = gap_bottom + int((10 ** (gap_len - 1) / 2))
gap_top = (top_value + 1) * (10 ** (gap_len - 1))
gap_value = [gap_bottom, gap_mid, gap_top]
gap_bottom_dis = abs(int(gap) - gap_bottom)
gap_mid_dis = abs(int(gap) - gap_mid)
gap_top_dis = abs(int(gap) - gap_top)
range_list = [gap_bottom_dis, gap_mid_dis, gap_top_dis]
min_i = 0
for i in range(len(range_list)):
if range_list[i] < range_list[min_i]:
min_i = i
final_gap = gap_value[min_i]
return int(final_gap)
def interpolation(lon, lat, lst):
# 網(wǎng)格插值——反距離權(quán)重法
p0 = [lon, lat]
sum0 = 0
sum1 = 0
temp = []
for point in lst:
if lon == point[0] and lat == point[1]:
return point[2]
Di = distance(p0, point)
ptn = copy.deepcopy(point)
ptn = list(ptn)
ptn.append(Di)
temp.append(ptn)
temp1 = sorted(temp, key=lambda point: point[3])
for point in temp1[0:15]:
sum0 += point[2] / math.pow(point[3], 2)
sum1 += 1 / math.pow(point[3], 2)
return sum0 / sum1
def distance(p, pi):
dis = (p[0] - pi[0]) * (p[0] - pi[0]) + (p[1] - pi[1]) * (p[1] - pi[1])
m_result = math.sqrt(dis)
return m_result
def gap_equal_line_value(min_value, max_value , n_group):
# 計(jì)算較為合適的gap來(lái)獲取最終的分界值
n_group = int(n_group)
gap = abs((max_value - min_value) / n_group)
if gap >= 1:
gap = int(math.ceil(gap))
final_gap = get_gap(gap)
else:
gap_effect = np.float('%.{}g'.format(1) % Decimal(gap))
gap_effect = gap * (10 ** (len(str(gap_effect)) - 2))
gap_multi = gap_effect / gap
gap = math.ceil(gap_effect)
final_gap = get_gap(gap)
final_gap = final_gap / gap_multi
#final_gap = np.float('%.{}g'.format(4) % Decimal(final_gap))
bottom = min_value + final_gap
if final_gap < 1:
final_bottom = bottom
else:
if abs(bottom) >= 1:
bottom_effect = math.ceil(abs(bottom))
final_bottom = get_gap(bottom_effect)
else:
bottom_effect = np.float('%.{}g'.format(1) % (abs(bottom)))
bottom_multi = bottom_effect / (abs(bottom))
bottom_effect = math.ceil(bottom_effect)
final_bottom = get_gap(bottom_effect)
final_bottom = (final_bottom / bottom_multi)
if bottom < 0:
final_bottom = final_bottom * (-1)
else:
pass
# print(final_bottom)
#final_bottom = keep_decimal(final_bottom)
equal_line_value = []
if math.floor(min_value) >= final_bottom:
equal_line_value.append(final_bottom-1)
else:
equal_line_value.append(math.floor(min_value))
equal_line_value.append(final_bottom)
for i in range(1, n_group-1):
final_bottom = final_bottom + final_gap
equal_line_value.append(final_bottom)
final_bottom = final_bottom + final_gap
if final_bottom <= max_value:
equal_line_value.append(math.ceil(max_value))
else:
equal_line_value.append(final_bottom)
print(equal_line_value)
return equal_line_value
def equal_line_value(min_value, max_value, n_group):
# 直接按照分組字?jǐn)?shù)計(jì)算分界值
n_group = int(n_group)
gap = abs((max_value - min_value) / n_group)
equal_line_value = []
if gap <= 0:
gap_flag = False #gap為0
equal_line_value.append(max_value-1)
equal_line_value.append(max_value+1)
else:
gap_flag = True
equal_line_value.append(min_value)
now_value = min_value
for i in range(1, n_group):
now_value = now_value + gap
equal_line_value.append(now_value)
equal_line_value.append(max_value)
res = {
'gap_flag': gap_flag,
'equal_line_value': equal_line_value
}
return res
def contour_line_plot(grid_x_plot, grid_y_plot, f_plot, levels,x_long,y_long,n_group):
n_group = int(n_group)
color1 = '#74E3AD'
color2 = '#17BD6D'
color3 = '#05A156'
color4 = '#038A49'
color5 = '#165C3A'
color6 = '#BDBDBD'
color7= '#848484'
color8 = '#FA58F4'
color9 = '#FF00BF'
color10 = '#FF0080'
color11 = '#8A084B'
color12 = '#3B0B24'
Colors_all = (color1, color2, color3, color4, color5, color6, color7, color8, color9, color10, color11, color12)
Colors = Colors_all[0:n_group]
fig = plt.figure(figsize=(x_long,y_long))
ax = plt.subplot()
ax.contourf(grid_x_plot, grid_y_plot, f_plot, levels=levels, colors = Colors)
ax.spines['top'].set_visible(False)
ax.spines['right'].set_visible(False)
ax.spines['bottom'].set_visible(False)
ax.spines['left'].set_visible(False)
ax.set_xticks([])
ax.set_yticks([])
plt.subplots_adjust(top=1, bottom=0, right=1, left=0, hspace=0, wspace=0)
plt.margins(0, 0)
# 輸出為二進(jìn)制流
canvas = fig.canvas
buffer = io.BytesIO() # 獲取輸入輸出流對(duì)象
canvas.print_png(buffer) # 將畫(huà)布上的內(nèi)容打印到輸入輸出流對(duì)象
data = buffer.getvalue() # 獲取流的值
buffer.close()
plt.close()
# with open('hhh.png', mode='wb') as f:
# f.write(data)
return data
def contour_line(data,n_group):
'''
data:數(shù)組,[[x1,y1,value1],[x2,y2,value2],[x2,y2,value2],......]
例:data = [[5,5,11],[5,25,21],[10,25,45],[10,5,5],[8,5,60]]
n_group:分組組數(shù)
'''
data = pd.DataFrame(data,columns=['x', 'y', 'f'])
min_x = data['x'].min()
max_x = data['x'].max()
min_y = data['y'].min()
max_y = data['y'].max()
# 設(shè)置等值線圖大小
x_long = 40.0
y_long = 40.0
lst = data.iloc[:, 0:3].values
# 設(shè)置網(wǎng)格大小
n_grid = 50
grid_x = np.linspace(min_x, max_x, n_grid)
grid_y = np.linspace(min_y, max_y, n_grid)
# 得到所有網(wǎng)格坐標(biāo)點(diǎn)
data_xy_list = []
for i in range(len(grid_x)):
for j in range(len(grid_y)):
data_xy_list.append([grid_x[i], grid_y[j]])
data_xy = pd.DataFrame(data_xy_list, columns=['x', 'y'])
# 得到所有網(wǎng)格坐標(biāo)點(diǎn)和對(duì)應(yīng)的值
insert_value_list = []
for i in range(len(data_xy)):
value = interpolation(data_xy.iloc[i, 0], data_xy.iloc[i, 1], lst)
insert_value_list.append([data_xy.iloc[i, 0], data_xy.iloc[i, 1], value])
insert_data = pd.DataFrame(insert_value_list, columns=['x', 'y', 'f'])
# 得到等值線的分界值
equal_value_res = equal_line_value(insert_data.loc[:, ['f']].min()[0], insert_data.loc[:, ['f']].max()[0],n_group)
equal_value_list = equal_value_res['equal_line_value']
f_plot = insert_data.loc[:, ['f']].values.reshape(n_grid, n_grid)
grid_y_plot, grid_x_plot = np.meshgrid(grid_y, grid_x)
plt_msg = contour_line_plot(grid_x_plot, grid_y_plot, f_plot, equal_value_list,x_long,y_long,n_group)
#data = data.set_index(axis.index)
if equal_value_res['gap_flag'] == False:
equal_value_list = [insert_data.loc[:, ['f']].min()[0]-1, insert_data.loc[:, ['f']].min()[0]]
res = {
# 等值線圖
'plt_msg': plt_msg, # 等值線圖數(shù)據(jù)流
'equal_value_list': equal_value_list, # 間距,標(biāo)簽
'xy_msg': [(min_x, max_x), (min_y, max_y)], # 邊界坐標(biāo)
'plot_data': data, # 繪圖點(diǎn)數(shù)據(jù)
'plot_size': [x_long, y_long]
}
return res
if __name__ == "__main__":
res = contour_line([[5, 5, 11], [5, 25, 21], [10, 25, 45], [10, 5, 5], [8, 5, 60]], 5)
總結(jié)
以上為個(gè)人經(jīng)驗(yàn),希望能給大家一個(gè)參考,也希望大家多多支持腳本之家。
相關(guān)文章
Python內(nèi)置函數(shù)input()示例詳解
input()函數(shù)是Python中用于獲取用戶輸入的一個(gè)簡(jiǎn)單而強(qiáng)大的工具,它在創(chuàng)建需要用戶交互的程序時(shí)非常有用,這篇文章主要介紹了Python內(nèi)置函數(shù)input()詳解,需要的朋友可以參考下2024-04-04
python常用庫(kù)之NumPy和sklearn入門(mén)
這篇文章主要介紹了python常用庫(kù)之NumPy和sklearn入門(mén),文中通過(guò)示例代碼介紹的非常詳細(xì),對(duì)大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價(jià)值,需要的朋友們下面隨著小編來(lái)一起學(xué)習(xí)學(xué)習(xí)吧2019-07-07
python3實(shí)現(xiàn)短網(wǎng)址和數(shù)字相互轉(zhuǎn)換的方法
這篇文章主要介紹了python3實(shí)現(xiàn)短網(wǎng)址和數(shù)字相互轉(zhuǎn)換的方法,涉及Python操作字符串的相關(guān)技巧,非常具有實(shí)用價(jià)值,需要的朋友可以參考下2015-04-04
如何用itertools解決無(wú)序排列組合的問(wèn)題
下面小編就為大家?guī)?lái)一篇如何用itertools解決無(wú)序排列組合的問(wèn)題。小編覺(jué)得挺不錯(cuò)的,現(xiàn)在就分享給大家,也給大家做個(gè)參考。一起跟隨小編過(guò)來(lái)看看吧2017-05-05
Ubuntu 16.04 LTS中源碼安裝Python 3.6.0的方法教程
最近Python 3發(fā)布了新版本Python 3.6.0,好像又加入了不少黑魔法!由于暫時(shí)不能使用 apt-get 的方式安裝 Python 3.6,所以還是直接編譯源碼安裝吧。下面這篇文章就介紹了在Ubuntu 16.04 LTS中源碼安裝Python 3.6.0的方法教程,需要的朋友可以參考下。2016-12-12
Python?socket如何解析HTTP請(qǐng)求內(nèi)容
這篇文章主要介紹了Python?socket如何解析HTTP請(qǐng)求內(nèi)容,具有很好的參考價(jià)值,希望對(duì)大家有所幫助。如有錯(cuò)誤或未考慮完全的地方,望不吝賜教2022-02-02

