C++利用Opencv實(shí)現(xiàn)多個(gè)圓形檢測(cè)
主要是利用霍夫圓檢測(cè)、面積篩選等完成多個(gè)圓形檢測(cè),具體代碼及結(jié)果如下。
第一部分是頭文件(common.h):
#pragma once #include<opencv2/opencv.hpp> #include<opencv2/highgui.hpp> #include<iostream> using namespace std; using namespace cv; extern Mat src; void imageBasicInformation(Mat& src);//圖像基本信息 const Mat houghCirclePre(Mat& srcPre);//霍夫圓檢測(cè)預(yù)處理 void houghCircle(Mat& srcPreHough);//霍夫圓檢測(cè) const Mat RectCirclePre(Mat& srcPre);//面積篩選擬合圓的預(yù)處理 void AreaCircles(Mat& AreaInput);//面積篩選擬合圓檢測(cè)
第二部分是主函數(shù):
#include"common.h"
Mat src;
int main()
{
src = imread("1.jpg",1);
if (src.empty())
{
cout << "圖像不存在!" << endl;
}
else
{
namedWindow("原圖", 1);
imshow("原圖", src);
imageBasicInformation(src);
Mat srcPreHough = houghCirclePre(src);
houghCircle(srcPreHough);
Mat RectCir = RectCirclePre(src);
AreaCircles(RectCir);
waitKey(0);
destroyAllWindows();
}
return 0;
}第三部分為霍夫圓檢測(cè)函數(shù)(hough.cpp)
主要包括輸出圖像的基本信息函數(shù):void imageBasicInformation(Mat& src)
霍夫圓檢測(cè)預(yù)處理函數(shù):const Mat houghCirclePre(Mat& srcPre)
霍夫圓檢測(cè)函數(shù):void houghCircle(Mat& srcPreHough)
#include"common.h"
Mat graySrc, srcPre;//灰度圖,霍夫檢測(cè)預(yù)處理,
Mat threshold_grayaSrc;//二值化圖
Mat erode_threshold_graySrc, dilate_threshold_graySrc;//二值化后腐蝕,二值化后膨脹
void imageBasicInformation(Mat& src)
{
int cols = src.cols;
int rows = src.rows;
int channels = src.channels();
cout << "圖像寬為:" << cols << endl;
cout << "圖像高為:" << rows << endl;
cout << "圖像通道數(shù):" << channels << endl;
}
const Mat houghCirclePre(Mat& srcPre)
{
double houghCirclePreTime = static_cast<double>(getTickCount());
cvtColor(srcPre, graySrc, COLOR_BGR2GRAY);
GaussianBlur(graySrc, graySrc, Size(3, 3), 2, 2);//濾波
threshold(graySrc, threshold_grayaSrc, 150, 255, 1);//二值化
Mat element = getStructuringElement(MORPH_RECT, Size(15, 15));
dilate(threshold_grayaSrc, dilate_threshold_graySrc, element);//膨脹
erode(dilate_threshold_graySrc, erode_threshold_graySrc, element);//腐蝕
houghCirclePreTime = ((double)getTickCount() - houghCirclePreTime) / getTickFrequency();
cout << "霍夫圓預(yù)處理時(shí)間為:" << houghCirclePreTime << "秒" << endl;
return erode_threshold_graySrc;
}
void houghCircle(Mat& srcPreHough)
{
cout << "進(jìn)入霍夫圓檢測(cè)" << endl;
vector<Vec3f> circles;
HoughCircles(srcPreHough, circles, HOUGH_GRADIENT, 1, 60, 1, 35, 0, 0);
cout << "圓的個(gè)數(shù)" << circles.size() << endl;
for (size_t i = 0;i < circles.size();i++)
{
Point center(cvRound(circles[i][0]), cvRound(circles[i][1]));
int radius = cvRound(circles[i][2]);
circle(src, center, 3, Scalar(0, 255, 0), -1, 8, 0);//畫圓心
circle(src, center, radius, Scalar(0, 0, 255), 3, 8, 0);//畫圓
}
namedWindow("霍夫檢測(cè)結(jié)果", 0);
imshow("霍夫檢測(cè)結(jié)果", src);
imwrite("霍夫圓檢測(cè)結(jié)果.jpg", src);//保存檢測(cè)結(jié)果
}第四部分為利用面積篩選擬合圓檢測(cè)(AreaCircle.cpp)
主要包括預(yù)處理函數(shù):const Mat RectCirclePre(Mat& srcPre)
面積篩選擬合圓檢測(cè)函數(shù):void AreaCircles(Mat& AreaInput)
#include"common.h"
Mat graySrcArea, thresholdGraySrc;//灰度圖像,二值化圖像
Mat dilateThresholdGraySrc, erodeThresholdGraySrc;//二值化后膨脹圖像,膨脹之后的腐蝕圖像
const Mat RectCirclePre(Mat& srcPre)
{
cvtColor(srcPre, graySrcArea, COLOR_BGR2GRAY);
GaussianBlur(graySrcArea, graySrcArea, Size(3, 3), 2, 2);
threshold(graySrcArea, thresholdGraySrc, 100, 255, 1);//二值化,閾值要根據(jù)自己的圖像自己調(diào)整
Mat element = getStructuringElement(MORPH_RECT, Size(15, 15));
dilate(thresholdGraySrc, dilateThresholdGraySrc, element);//膨脹
erode(dilateThresholdGraySrc, erodeThresholdGraySrc, element);//腐蝕
return erodeThresholdGraySrc;
}
void AreaCircles(Mat& AreaInput)
{
vector<vector<Point>> RectContours;
vector<Vec4i> Hierarchy;
findContours(AreaInput, RectContours, Hierarchy, RETR_TREE, CHAIN_APPROX_SIMPLE, Point(0, 0));
Mat drawing = Mat::zeros(src.size(), CV_8UC3);
for (int i = 0;i < RectContours.size();i++)
{
double area = contourArea(RectContours[i]);
cout << area << endl;//輸出所有計(jì)算出來的面積,方便下一步設(shè)置閾值
if (area > 15000 && area < 100000)//根據(jù)上一步計(jì)算的閾值設(shè)置范圍
{
drawContours(drawing, RectContours, i, Scalar(0, 255, 0), 2,8, Hierarchy, 0, Point());
RotatedRect Rect = fitEllipse(RectContours[i]);
circle(src, Rect.center, 2, Scalar(0, 255, 0), 2, 8, 0);//在原圖畫出圓心
ellipse(src, Rect, Scalar(0, 0, 255), 2);//在原圖畫出輪廓
}
}
namedWindow("面積篩選擬合圓", 0);
imshow("面積篩選擬合圓", src);
imwrite("面積篩選擬合圓.jpg", src);//保存檢測(cè)結(jié)果
}結(jié)果如下(自己畫的兩個(gè)圓):
原圖:

以下為霍夫圓檢測(cè)結(jié)果:

以下為面積篩選擬合圓結(jié)果:

到此這篇關(guān)于C++利用Opencv實(shí)現(xiàn)多個(gè)圓形檢測(cè)的文章就介紹到這了,更多相關(guān)C++ Opencv圓形檢測(cè)內(nèi)容請(qǐng)搜索腳本之家以前的文章或繼續(xù)瀏覽下面的相關(guān)文章希望大家以后多多支持腳本之家!
- C++?opencv圖像處理實(shí)現(xiàn)圖片邊緣檢測(cè)示例
- C++ OpenCV實(shí)戰(zhàn)之網(wǎng)孔檢測(cè)的實(shí)現(xiàn)
- C++ OpenCV實(shí)戰(zhàn)之標(biāo)記點(diǎn)檢測(cè)的實(shí)現(xiàn)
- C++?OpenCV實(shí)戰(zhàn)之車道檢測(cè)
- C++?OpenCV實(shí)現(xiàn)二維碼檢測(cè)功能
- C++ opencv霍夫圓檢測(cè)使用案例詳解
- opencv3/C++ 實(shí)現(xiàn)SURF特征檢測(cè)
- opencv3/C++實(shí)現(xiàn)霍夫圓/直線檢測(cè)
- C++利用opencv實(shí)現(xiàn)人臉檢測(cè)
相關(guān)文章
C++詳細(xì)講解互斥量與lock_guard類模板及死鎖
線程的主要優(yōu)勢(shì)在于,能夠通過全局變量來共享信息。不過,這種便捷的共享是有代價(jià)的:必須確保多個(gè)線程不會(huì)同時(shí)修改同一變量,或者某一線程不會(huì)讀取正由其他線程修改的變量。為了防止出現(xiàn)線程某甲試圖訪 問一共享變量時(shí),線程某乙正在對(duì)其進(jìn)行修改。引入了互斥量2022-07-07
C語言判斷一個(gè)數(shù)是否為素?cái)?shù)方法解析
這篇文章主要介紹了C語言判斷一個(gè)數(shù)是否為素?cái)?shù)方法,文中通過示例代碼介紹的非常詳細(xì),對(duì)大家的學(xué)習(xí)具有一定的參考學(xué)習(xí)價(jià)值,需要的朋友們下面隨著小編來一起學(xué)習(xí)學(xué)習(xí)吧2020-07-07

