python繪制玫瑰花情人節(jié)表白
一、玫瑰花繪制—深紅色

import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
fig = plt.figure()
ax = fig.gca(projection='3d')
[x, t] = np.meshgrid(np.array(range(25)) / 24.0, np.arange(0, 575.5, 0.5) / 575 * 30 * np.pi - 4*np.pi)
p = (np.pi / 2) * np.exp(-t / (8 * np.pi))
change = np.sin(20*t)/50
u = 1 - (1 - np.mod(3.3 * t, 2 * np.pi) / np.pi) ** 4 / 2 + change
y = 2 * (x ** 2 - x) ** 2 * np.sin(p)
r = u * (x * np.sin(p) + y * np.cos(p)) * 1.5
h = u * (x * np.cos(p) - y * np.sin(p))
c= plt.get_cmap('magma')
surf = ax.plot_surface(r * np.cos(t), r * np.sin(t), h, rstride=1, cstride=1,
cmap= c, linewidth=0, antialiased=True)
plt.show()二、玫瑰花繪制—五顏六色


import numpy as np
import matplotlib.pyplot as plt
from matplotlib import cm
from mpl_toolkits.mplot3d import Axes3D
fig = plt.figure()
ax = fig.gca(projection='3d')
[x, t] = np.meshgrid(np.array(range(25)) / 24.0, np.arange(0, 575.5, 0.5) / 575 * 17 * np.pi - 2 * np.pi)
p = (np.pi / 2) * np.exp(-t / (8 * np.pi))
u = 1 - (1 - np.mod(3.6 * t, 2 * np.pi) / np.pi) ** 4 / 2
y = 2 * (x ** 2 - x) ** 2 * np.sin(p)
r = u * (x * np.sin(p) + y * np.cos(p))
h = u * (x * np.cos(p) - y * np.sin(p))
c= cm.gist_rainbow_r
surf = ax.plot_surface(r * np.cos(t), r * np.sin(t), h, rstride=1, cstride=1,
cmap= c, linewidth=0, antialiased=True)
plt.show()三、玫瑰花繪制—粉紅色

import numpy as np
import matplotlib.pyplot as plt
from matplotlib import cm
from mpl_toolkits.mplot3d import Axes3D
fig = plt.figure()
ax = fig.gca(projection='3d')
[x, t] = np.meshgrid(np.array(range(25)) / 24.0, np.arange(0, 575.5, 0.5) / 575 * 17 * np.pi - 2 * np.pi)
p = (np.pi / 2) * np.exp(-t / (8 * np.pi))
u = 1 - (1 - np.mod(3.6 * t, 2 * np.pi) / np.pi) ** 4 / 2
y = 2 * (x ** 2 - x) ** 2 * np.sin(p)
r = u * (x * np.sin(p) + y * np.cos(p))
h = u * (x * np.cos(p) - y * np.sin(p))
c= cm.get_cmap('spring_r')
surf = ax.plot_surface(r * np.cos(t), r * np.sin(t), h, rstride=1, cstride=1,
cmap= c, linewidth=0, antialiased=True)
plt.show()四、玫瑰花繪制—紅色

# 省略了頭文件,可以在之前的博客里看到
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
fig = plt.figure()
ax = fig.gca(projection='3d')
# 將相位向后移動了6*pi
[x, t] = np.meshgrid(np.array(range(25)) / 24.0, np.arange(0, 575.5, 0.5) / 575 * 20 * np.pi + 4*np.pi)
p = (np.pi / 2) * np.exp(-t / (8 * np.pi))
# 添加邊緣擾動
change = np.sin(15*t)/150
# 將t的參數(shù)減少,使花瓣的角度變大
u = 1 - (1 - np.mod(3.3 * t, 2 * np.pi) / np.pi) ** 4 / 2 + change
y = 2 * (x ** 2 - x) ** 2 * np.sin(p)
r = u * (x * np.sin(p) + y * np.cos(p))
h = u * (x * np.cos(p) - y * np.sin(p))
c= plt.get_cmap('Reds')
surf = ax.plot_surface(r * np.cos(t), r * np.sin(t), h, rstride=1, cstride=1,
cmap= c, linewidth=0, antialiased=True)
plt.show()五、桃花繪制

import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
fig = plt.figure()
ax = fig.gca(projection='3d')
[x, t] = np.meshgrid(np.array(range(25)) / 24.0, np.arange(0, 575.5, 0.5) / 575 * 6 * np.pi - 4*np.pi)
p = (np.pi / 2) * np.exp(-t / (8 * np.pi))
change = np.sin(10*t)/20
u = 1 - (1 - np.mod(5.2 * t, 2 * np.pi) / np.pi) ** 4 / 2 + change
y = 2 * (x ** 2 - x) ** 2 * np.sin(p)
r = u * (x * np.sin(p) + y * np.cos(p)) * 1.5
h = u * (x * np.cos(p) - y * np.sin(p))
c= plt.get_cmap('spring_r')
surf = ax.plot_surface(r * np.cos(t), r * np.sin(t), h, rstride=1, cstride=1,
cmap= c, linewidth=0, antialiased=True)
plt.show()到此這篇關(guān)于python繪制玫瑰花情人節(jié)表白的文章就介紹到這了,更多相關(guān)python繪制玫瑰花內(nèi)容請搜索腳本之家以前的文章或繼續(xù)瀏覽下面的相關(guān)文章希望大家以后多多支持腳本之家!
相關(guān)文章
python實(shí)現(xiàn)不同數(shù)據(jù)庫間數(shù)據(jù)同步功能
這篇文章主要介紹了python實(shí)現(xiàn)不同數(shù)據(jù)庫間數(shù)據(jù)同步功能,本文給大家介紹的非常詳細(xì),對大家的學(xué)習(xí)或工作具有一定的參考借鑒價值,需要的朋友可以參考下2021-02-02
PythonWeb項(xiàng)目Django部署在Ubuntu18.04騰訊云主機(jī)上
這篇文章主要介紹了PythonWeb項(xiàng)目Django部署在Ubuntu18.04騰訊云主機(jī)上的相關(guān)知識,本文通過代碼加文字說明的形式給大家介紹的非常詳細(xì),具有一定的參考借鑒價值 ,需要的朋友可以參考下2019-04-04
python如何爬取網(wǎng)站數(shù)據(jù)并進(jìn)行數(shù)據(jù)可視化
這篇文章主要介紹了python爬取拉勾網(wǎng)數(shù)據(jù)并進(jìn)行數(shù)據(jù)可視化,爬取拉勾網(wǎng)關(guān)于python職位相關(guān)的數(shù)據(jù)信息,并將爬取的數(shù)據(jù)已csv各式存入文件,然后對csv文件相關(guān)字段的數(shù)據(jù)進(jìn)行清洗,并對數(shù)據(jù)可視化展示,包括柱狀圖展示、直方圖展示,需要的朋友可以參考下2019-07-07
深入探究python中Pandas庫處理缺失數(shù)據(jù)和數(shù)據(jù)聚合
在本篇文章中,我們將深入探討Pandas庫中兩個重要的數(shù)據(jù)處理功能:處理缺失數(shù)據(jù)和數(shù)據(jù)聚合,文中有詳細(xì)的代碼示例,對我們的學(xué)習(xí)或工作有一定的幫助,需要的朋友可以參考下2023-07-07
pandas pivot_table() 按日期分多列數(shù)據(jù)的方法
今天小編就為大家分享一篇pandas pivot_table() 按日期分多列數(shù)據(jù)的方法,具有很好的參考價值,希望對大家有所幫助。一起跟隨小編過來看看吧2018-11-11
使用python socket分發(fā)大文件的實(shí)現(xiàn)方法
今天小編就為大家分享一篇使用python socket分發(fā)大文件的實(shí)現(xiàn)方法,具有很好的參考價值,希望對大家有所幫助。一起跟隨小編過來看看吧2019-07-07
jupyter notebook 調(diào)用環(huán)境中的Keras或者pytorch教程
這篇文章主要介紹了jupyter notebook 調(diào)用環(huán)境中的Keras或者pytorch教程,具有很好的參考價值,希望對大家有所幫助。一起跟隨小編過來看看吧2020-04-04

