pandas中pd.groupby()的用法詳解
在pandas中的groupby和在sql語句中的groupby有異曲同工之妙,不過也難怪,畢竟關(guān)系數(shù)據(jù)庫中的存放數(shù)據(jù)的結(jié)構(gòu)也是一張大表罷了,與dataframe的形式相似。
import numpy as np
import pandas as pd
from pandas import Series, DataFrame
df = pd.read_csv('./city_weather.csv')
print(df)
'''
? ? ? ? ? date city ?temperature ?wind
0 ? 03/01/2016 ? BJ ? ? ? ? ? ?8 ? ? 5
1 ? 17/01/2016 ? BJ ? ? ? ? ? 12 ? ? 2
2 ? 31/01/2016 ? BJ ? ? ? ? ? 19 ? ? 2
3 ? 14/02/2016 ? BJ ? ? ? ? ? -3 ? ? 3
4 ? 28/02/2016 ? BJ ? ? ? ? ? 19 ? ? 2
5 ? 13/03/2016 ? BJ ? ? ? ? ? ?5 ? ? 3
6 ? 27/03/2016 ? SH ? ? ? ? ? -4 ? ? 4
7 ? 10/04/2016 ? SH ? ? ? ? ? 19 ? ? 3
8 ? 24/04/2016 ? SH ? ? ? ? ? 20 ? ? 3
9 ? 08/05/2016 ? SH ? ? ? ? ? 17 ? ? 3
10 ?22/05/2016 ? SH ? ? ? ? ? ?4 ? ? 2
11 ?05/06/2016 ? SH ? ? ? ? ?-10 ? ? 4
12 ?19/06/2016 ? SH ? ? ? ? ? ?0 ? ? 5
13 ?03/07/2016 ? SH ? ? ? ? ? -9 ? ? 5
14 ?17/07/2016 ? GZ ? ? ? ? ? 10 ? ? 2
15 ?31/07/2016 ? GZ ? ? ? ? ? -1 ? ? 5
16 ?14/08/2016 ? GZ ? ? ? ? ? ?1 ? ? 5
17 ?28/08/2016 ? GZ ? ? ? ? ? 25 ? ? 4
18 ?11/09/2016 ? SZ ? ? ? ? ? 20 ? ? 1
19 ?25/09/2016 ? SZ ? ? ? ? ?-10 ? ? 4
'''
g = df.groupby(df['city'])
# <pandas.core.groupby.groupby.DataFrameGroupBy object at 0x7f10450e12e8>
print(g.groups)
# {'BJ': Int64Index([0, 1, 2, 3, 4, 5], dtype='int64'),
# 'GZ': Int64Index([14, 15, 16, 17], dtype='int64'),
# 'SZ': Int64Index([18, 19], dtype='int64'),
# 'SH': Int64Index([6, 7, 8, 9, 10, 11, 12, 13], dtype='int64')}
print(g.size()) # g.size() 可以統(tǒng)計每個組 成員的 數(shù)量
'''
city
BJ ? ?6
GZ ? ?4
SH ? ?8
SZ ? ?2
dtype: int64
'''
print(g.get_group('BJ')) # 得到 某個 分組
'''
? ? ? ? ?date city ?temperature ?wind
0 ?03/01/2016 ? BJ ? ? ? ? ? ?8 ? ? 5
1 ?17/01/2016 ? BJ ? ? ? ? ? 12 ? ? 2
2 ?31/01/2016 ? BJ ? ? ? ? ? 19 ? ? 2
3 ?14/02/2016 ? BJ ? ? ? ? ? -3 ? ? 3
4 ?28/02/2016 ? BJ ? ? ? ? ? 19 ? ? 2
5 ?13/03/2016 ? BJ ? ? ? ? ? ?5 ? ? 3
'''
df_bj = g.get_group('BJ')
print(df_bj.mean()) # 對這個 分組 求平均
'''
temperature ? ?10.000000
wind ? ? ? ? ? ?2.833333
dtype: float64
'''
# 直接使用 g 對象,求平均值
print(g.mean()) # 對 每一個 分組, 都計算分組
'''
? ? ? temperature ? ? ?wind
city ? ? ? ? ? ? ? ? ? ? ??
BJ ? ? ? ? 10.000 ?2.833333
GZ ? ? ? ? ?8.750 ?4.000000
SH ? ? ? ? ?4.625 ?3.625000
SZ ? ? ? ? ?5.000 ?2.500000
'''
print(g.max())
'''
? ? ? ? ? ? date ?temperature ?wind
city ? ? ? ? ? ? ? ? ? ? ? ? ? ? ??
BJ ? ?31/01/2016 ? ? ? ? ? 19 ? ? 5
GZ ? ?31/07/2016 ? ? ? ? ? 25 ? ? 5
SH ? ?27/03/2016 ? ? ? ? ? 20 ? ? 5
SZ ? ?25/09/2016 ? ? ? ? ? 20 ? ? 4
'''
print(g.min())
'''
? ? ? ? ? ? date ?temperature ?wind
city ? ? ? ? ? ? ? ? ? ? ? ? ? ? ??
BJ ? ?03/01/2016 ? ? ? ? ? -3 ? ? 2
GZ ? ?14/08/2016 ? ? ? ? ? -1 ? ? 2
SH ? ?03/07/2016 ? ? ? ? ?-10 ? ? 2
SZ ? ?11/09/2016 ? ? ? ? ?-10 ? ? 1
'''
# g 對象還可以使用 for 進(jìn)行循環(huán)遍歷
for name, group in g:
? ? print(name)
? ? print(group)
# g 可以轉(zhuǎn)化為 list類型, dict類型
print(list(g)) # 元組第一個元素是 分組的label,第二個是dataframe
'''
[('BJ', ? ? ? ? ?date city ?temperature ?wind
0 ?03/01/2016 ? BJ ? ? ? ? ? ?8 ? ? 5
1 ?17/01/2016 ? BJ ? ? ? ? ? 12 ? ? 2
2 ?31/01/2016 ? BJ ? ? ? ? ? 19 ? ? 2
3 ?14/02/2016 ? BJ ? ? ? ? ? -3 ? ? 3
4 ?28/02/2016 ? BJ ? ? ? ? ? 19 ? ? 2
5 ?13/03/2016 ? BJ ? ? ? ? ? ?5 ? ? 3),?
('GZ', ? ? ? ? ? date city ?temperature ?wind
14 ?17/07/2016 ? GZ ? ? ? ? ? 10 ? ? 2
15 ?31/07/2016 ? GZ ? ? ? ? ? -1 ? ? 5
16 ?14/08/2016 ? GZ ? ? ? ? ? ?1 ? ? 5
17 ?28/08/2016 ? GZ ? ? ? ? ? 25 ? ? 4),?
('SH', ? ? ? ? ? date city ?temperature ?wind
6 ? 27/03/2016 ? SH ? ? ? ? ? -4 ? ? 4
7 ? 10/04/2016 ? SH ? ? ? ? ? 19 ? ? 3
8 ? 24/04/2016 ? SH ? ? ? ? ? 20 ? ? 3
9 ? 08/05/2016 ? SH ? ? ? ? ? 17 ? ? 3
10 ?22/05/2016 ? SH ? ? ? ? ? ?4 ? ? 2
11 ?05/06/2016 ? SH ? ? ? ? ?-10 ? ? 4
12 ?19/06/2016 ? SH ? ? ? ? ? ?0 ? ? 5
13 ?03/07/2016 ? SH ? ? ? ? ? -9 ? ? 5),?
('SZ', ? ? ? ? ? date city ?temperature ?wind
18 ?11/09/2016 ? SZ ? ? ? ? ? 20 ? ? 1
19 ?25/09/2016 ? SZ ? ? ? ? ?-10 ? ? 4)]
'''
print(dict(list(g))) # 返回鍵值對,值的類型是 dataframe
'''
{'SH': ? ? ? ? ? date city ?temperature ?wind
6 ? 27/03/2016 ? SH ? ? ? ? ? -4 ? ? 4
7 ? 10/04/2016 ? SH ? ? ? ? ? 19 ? ? 3
8 ? 24/04/2016 ? SH ? ? ? ? ? 20 ? ? 3
9 ? 08/05/2016 ? SH ? ? ? ? ? 17 ? ? 3
10 ?22/05/2016 ? SH ? ? ? ? ? ?4 ? ? 2
11 ?05/06/2016 ? SH ? ? ? ? ?-10 ? ? 4
12 ?19/06/2016 ? SH ? ? ? ? ? ?0 ? ? 5
13 ?03/07/2016 ? SH ? ? ? ? ? -9 ? ? 5,?
'SZ': ? ? ? ? ? date city ?temperature ?wind
18 ?11/09/2016 ? SZ ? ? ? ? ? 20 ? ? 1
19 ?25/09/2016 ? SZ ? ? ? ? ?-10 ? ? 4,?
'GZ': ? ? ? ? ? date city ?temperature ?wind
14 ?17/07/2016 ? GZ ? ? ? ? ? 10 ? ? 2
15 ?31/07/2016 ? GZ ? ? ? ? ? -1 ? ? 5
16 ?14/08/2016 ? GZ ? ? ? ? ? ?1 ? ? 5
17 ?28/08/2016 ? GZ ? ? ? ? ? 25 ? ? 4,?
'BJ': ? ? ? ? ?date city ?temperature ?wind
0 ?03/01/2016 ? BJ ? ? ? ? ? ?8 ? ? 5
1 ?17/01/2016 ? BJ ? ? ? ? ? 12 ? ? 2
2 ?31/01/2016 ? BJ ? ? ? ? ? 19 ? ? 2
3 ?14/02/2016 ? BJ ? ? ? ? ? -3 ? ? 3
4 ?28/02/2016 ? BJ ? ? ? ? ? 19 ? ? 2
5 ?13/03/2016 ? BJ ? ? ? ? ? ?5 ? ? 3}
'''到此這篇關(guān)于pandas中pd.groupby()的用法詳解的文章就介紹到這了,更多相關(guān)pandas pd.groupby()內(nèi)容請搜索腳本之家以前的文章或繼續(xù)瀏覽下面的相關(guān)文章希望大家以后多多支持腳本之家!
相關(guān)文章
python框架django項目部署相關(guān)知識詳解
這篇文章主要介紹了python框架django項目部署相關(guān)知識詳解,文中通過示例代碼介紹的非常詳細(xì),對大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價值,需要的朋友可以參考下2019-11-11
Python中eval函數(shù)的表達(dá)式作用示例
這篇文章主要介紹了Python中eval函數(shù)的表達(dá)式用法示例,文中通過示例對比來為大家進(jìn)行詳細(xì)的講解,有需要的朋友可以借鑒參下,希望有所幫助2021-09-09
Python利用pandas和matplotlib實現(xiàn)繪制堆疊柱狀圖
在數(shù)據(jù)可視化中,堆疊柱狀圖是一種常用的圖表類型,它能夠清晰地展示多個類別的數(shù)據(jù),本文將演示如何使用 Python 的 pandas 和 matplotlib 庫繪制優(yōu)化的堆疊柱狀圖,需要的可以參考下2023-11-11
Pytorch出現(xiàn)錯誤Attribute?Error:module?‘torch‘?has?no?attrib
這篇文章主要給大家介紹了關(guān)于Pytorch出現(xiàn)錯誤Attribute?Error:module?‘torch‘?has?no?attribute?'_six'解決的相關(guān)資料,文中通過圖文介紹的非常詳細(xì),需要的朋友可以參考下2023-11-11

