教你用pyecharts繪制各種圖表案例(效果+代碼)
更新時間:2022年06月09日 09:26:07 作者:"wink
說到pyecharts,相信很多人不會陌生,一個優(yōu)秀的python可視化包,下面這篇文章主要給大家介紹了關(guān)于如何用pyecharts繪制各種圖表案例的相關(guān)資料,需要的朋友可以參考下
1、pyecharts繪制餅圖(顯示百分比)
# 導(dǎo)入模塊
from pyecharts import options as opts
from pyecharts.charts import Pie
#準(zhǔn)備數(shù)據(jù)
label=['Mac口紅','Tom Ford口紅','圣羅蘭','紀(jì)梵希','花西子','迪奧','阿瑪尼','香奈兒']
values = [300,300,300,300,44,300,300,300]
# 自定義函數(shù)
def pie_base():
c = (
Pie()
.add("",[list(z) for z in zip(label,values)])
.set_global_opts(title_opts = opts.TitleOpts(title="口紅品牌分析"))
.set_series_opts(label_opts=opts.LabelOpts(formatter=":{c} ak6gewe%")) # 值得一提的是,ug6cimi%為百分比
)
return c
# 調(diào)用自定義函數(shù)生成render.html
pie_base().render()

2、pyecharts繪制柱狀圖
#導(dǎo)入模塊
from pyecharts.globals import ThemeType
from pyecharts import options as opts
from pyecharts.charts import Bar
#準(zhǔn)備數(shù)據(jù)
l1=['星期一','星期二','星期三','星期四','星期五','星期七','星期日']
l2=[100,200,300,400,500,400,300]
bar = (
Bar(init_opts=opts.InitOpts(theme=ThemeType.LIGHT))
.add_xaxis(l1)
.add_yaxis("柱狀圖標(biāo)簽", l2)
.set_global_opts(title_opts=opts.TitleOpts(title="柱狀圖-基本示例", subtitle="副標(biāo)題"))
)
# 生成render.html
bar.render()

3、pyecharts繪制折線圖
#導(dǎo)入模塊
import pyecharts.options as opts
from pyecharts.charts import Line
#準(zhǔn)備數(shù)據(jù)
x=['星期一','星期二','星期三','星期四','星期五','星期七','星期日']
y1=[100,200,300,400,100,400,300]
y2=[200,300,200,100,200,300,400]
line=(
Line()
.add_xaxis(xaxis_data=x)
.add_yaxis(series_name="y1線",y_axis=y1,symbol="arrow",is_symbol_show=True)
.add_yaxis(series_name="y2線",y_axis=y2)
.set_global_opts(title_opts=opts.TitleOpts(title="Line-雙折線圖"))
)
#生成render.html
line.render()

4、pyecharts繪制柱形折線組合圖
from pyecharts import options as opts
from pyecharts.charts import Bar, Grid, Line
#x軸的值為列表,包含每個月份
x_data = ["{}月".format(i) for i in range(1, 13)]
bar = (
Bar()
.add_xaxis(x_data)
#第一個y軸的值、標(biāo)簽、顏色
.add_yaxis(
"降雨量",
[2.0, 4.9, 7.0, 23.2, 25.6, 76.7, 135.6, 162.2, 68.6, 22.0, 6.6, 4.3],
yaxis_index=0,
color="#5793f3",
)
# #第二個y軸的值、標(biāo)簽、顏色
# .add_yaxis(
# "蒸發(fā)量",
# [2.6, 5.9, 9.0, 26.4, 28.7, 70.7, 175.6, 182.2, 48.7, 18.8, 6.0, 2.3],
# yaxis_index=1,
# color="#5793f3",
# )
#右縱坐標(biāo)
.extend_axis(
yaxis=opts.AxisOpts(
name="降雨量",
type_="value",
min_=0,
max_=250,
position="right",
axisline_opts=opts.AxisLineOpts(
linestyle_opts=opts.LineStyleOpts(color="#d14a61")
),
axislabel_opts=opts.LabelOpts(formatter="{value} ml"),
)
)
#左縱坐標(biāo)
.extend_axis(
yaxis=opts.AxisOpts(
type_="value",
name="溫度",
min_=0,
max_=25,
position="left",
axisline_opts=opts.AxisLineOpts(
linestyle_opts=opts.LineStyleOpts(color="#d14a61")
),
axislabel_opts=opts.LabelOpts(formatter="{value} °C"),
splitline_opts=opts.SplitLineOpts(
is_show=True, linestyle_opts=opts.LineStyleOpts(opacity=1)
),
)
)
.set_global_opts(
yaxis_opts=opts.AxisOpts(
name="降雨量",
min_=0,
max_=250,
position="right",
offset=0,
axisline_opts=opts.AxisLineOpts(
linestyle_opts=opts.LineStyleOpts(color="#5793f3")
),
axislabel_opts=opts.LabelOpts(formatter="{value} ml"),
),
title_opts=opts.TitleOpts(title="Grid-多 Y 軸示例"),
tooltip_opts=opts.TooltipOpts(trigger="axis", axis_pointer_type="cross"),
)
)
line = (
Line()
.add_xaxis(x_data)
.add_yaxis(
"平均溫度",
[2.0, 2.2, 3.3, 4.5, 6.3, 10.2, 20.3, 23.4, 23.0, 16.5, 12.0, 6.2],
yaxis_index=2,
color="#675bba",
label_opts=opts.LabelOpts(is_show=False),
)
)
bar.overlap(line)
grid = Grid()
grid.add(bar, opts.GridOpts(pos_left="5%", pos_right="20%"), is_control_axis_index=True)
grid.render()

5、pyecharts繪制散點圖
# 導(dǎo)入模塊
from pyecharts import options as opts
from pyecharts.charts import Scatter
# 設(shè)置銷售數(shù)據(jù)
week = ["周一","周二","周三","周四","周五","周六","周日"]
c =Scatter() # 散點圖繪制
c.add_xaxis(week)
c.add_yaxis("商家A",[80,65,46,37,57,68,90])
c.set_global_opts(title_opts=opts.TitleOpts(title="一周的銷售額(萬元)")) # 設(shè)置圖表標(biāo)題
c.render()

6、pyecharts繪制玫瑰圖
from pyecharts import options as opts
from pyecharts.charts import Pie
label=['Mac口紅','Tom Ford口紅','圣羅蘭','紀(jì)梵希','花西子']
values = [100,200,250,350,400]
c = (
Pie()
.add(
"",
[list(z) for z in zip(label,values)],
radius=["30%", "75%"],
center=["50%", "50%"],
rosetype="radius",
label_opts=opts.LabelOpts(is_show=False),
)
.set_global_opts(title_opts=opts.TitleOpts(title="標(biāo)題"))
.set_series_opts(label_opts=opts.LabelOpts(formatter=":{c} aoei4sy%")) # 值得一提的是,iwa6scw%為百分比
.render("玫瑰圖.html")
)

7、pyecharts繪制詞云圖
# 導(dǎo)入WordCloud及配置模塊
from pyecharts import options as opts
from pyecharts.charts import WordCloud
from pyecharts.globals import SymbolType
# 添加詞頻數(shù)據(jù)
words = [
("Sam S Club", 10000),
("Macys", 6181),
("Amy Schumer", 4386),
("Jurassic World", 4055),
("Charter Communications", 2467),
("Chick Fil A", 2244),
("Planet Fitness", 1868),
("Pitch Perfect", 1484),
("Express", 1112),
("Home", 865),
("Johnny Depp", 847),
("Lena Dunham", 582),
("Lewis Hamilton", 555),
("KXAN", 550),
("Mary Ellen Mark", 462),
("Farrah Abraham", 366),
("Rita Ora", 360),
("Serena Williams", 282),
("NCAA baseball tournament", 273),
("Point Break", 265),
]
# WordCloud模塊,鏈?zhǔn)秸{(diào)用配置,最終生成html文件
c = (
WordCloud()
.add("", words, word_size_range=[20, 100], shape=SymbolType.DIAMOND)
.set_global_opts(title_opts=opts.TitleOpts(title="詞云圖"))
.render("wordcloud_diamond.html")
)

8、pyecharts繪制雷達(dá)圖
from pyecharts import options as opts
from pyecharts.charts import Radar
v1 = [[8.5,50000,15000,8000,13000,5000]]
v2 = [[8.1,42000,13000,7000,15000,7000]]
def radar_base() ->Radar:
c = (
Radar()
.add_schema(
schema=[
opts.RadarIndicatorItem(name='KDA',max_=10),
opts.RadarIndicatorItem(name='輸出', max_=60000),
opts.RadarIndicatorItem(name='經(jīng)濟', max_=20000),
opts.RadarIndicatorItem(name='生存', max_=10000),
opts.RadarIndicatorItem(name='推進(jìn)', max_=20000),
opts.RadarIndicatorItem(name='刷野', max_=10000),
]
)
.add(
'射手',v1,
color='blue',
#通過顏色屬性 將其填充
areastyle_opts=opts.AreaStyleOpts(
opacity=0.5,
color='blue'
),
)
.add(
'法師',v2,
color='red',
areastyle_opts=opts.AreaStyleOpts(
opacity=0.5,
color='red'
),
)
.set_series_opts(label_opts=opts.LabelOpts(is_show=False))
.set_global_opts(title_opts=opts.TitleOpts(title='英雄成長屬性對比'))
)
return c
radar_base().render("雷達(dá)圖.html")

9、pyecharts繪制散點圖
from pyecharts import options as opts
from pyecharts.charts import Scatter
from pyecharts.commons.utils import JsCode
from pyecharts.faker import Faker
c = (
Scatter()
.add_xaxis(Faker.choose())
.add_yaxis(
"商家A",
[list(z) for z in zip(Faker.values(), Faker.choose())],
label_opts=opts.LabelOpts(
formatter=JsCode(
"function(params){return params.value[1] +' : '+ params.value[2];}"
)
),
)
.set_global_opts(
title_opts=opts.TitleOpts(title="Scatter散點圖-多維度數(shù)據(jù)"),
tooltip_opts=opts.TooltipOpts(
formatter=JsCode(
"function (params) {return params.name + ' : ' + params.value[2];}"
)
),
visualmap_opts=opts.VisualMapOpts(
type_="color", max_=150, min_=20, dimension=1
),
)
.render("散點圖.html")
)

10、pyecharts繪制嵌套餅圖
import pyecharts.options as opts
from pyecharts.charts import Pie
from pyecharts.globals import ThemeType
list1 = [300,55,400,110]
attr1 = ["學(xué)習(xí)", "運動","休息", "娛樂"]
list2 = [40,160,45,35,80,400,35,60]
attr2 = ["閱讀", "上課", "運動", "討論", "編程", "睡覺","聽音樂", "玩手機"]
inner_data_pair = [list(z) for z in zip(attr1, list1)]
outer_data_pair = [list(z) for z in zip(attr2, list2)]
(
Pie(init_opts=opts.InitOpts(theme=ThemeType.LIGHT))
.add(
series_name="時長占比",
data_pair=inner_data_pair,
radius=[0, "30%"],
label_opts=opts.LabelOpts(position="inner"),
)
.add(
series_name="時長占比",
radius=["40%", "55%"],
data_pair=outer_data_pair,
label_opts=opts.LabelOpts(
position="outside",
formatter="{a|{a}}{abg|}\n{hr|}\n {b|: }{c} {per|o4ycu6k%} ",
background_color="#eee",
border_color="#aaa",
border_width=1,
border_radius=4,
rich={
"a": {"color": "#999", "lineHeight": 22, "align": "center"},
"abg": {
"backgroundColor": "#e3e3e3",
"width": "100%",
"align": "right",
"height": 22,
"borderRadius": [4, 4, 0, 0],
},
"hr": {
"borderColor": "#aaa",
"width": "100%",
"borderWidth": 0.5,
"height": 0,
},
"b": {"fontSize": 16, "lineHeight": 33},
"per": {
"color": "#eee",
"backgroundColor": "#334455",
"padding": [2, 4],
"borderRadius": 2,
},
},
),
)
.set_global_opts(legend_opts=opts.LegendOpts(pos_left="left", orient="vertical"))
.set_series_opts(
tooltip_opts=opts.TooltipOpts(
trigger="item", formatter="{a} <br/>: {c} (acieiwa%)"
)
)
.render("嵌套餅圖.html")
)

11、pyecharts繪制中國地圖
#導(dǎo)入模塊
from pyecharts import options as opts
from pyecharts.charts import Map
import random
# 設(shè)置商家A所存在的相關(guān)省份,并設(shè)置初始數(shù)量為0
ultraman = [
['四川', 0],
['臺灣', 0],
['新疆', 0],
['江西', 0],
['河南', 0],
['遼寧', 0],
['青海', 0],
['福建', 0],
['西藏', 0]
]
# 設(shè)置商家B存在的相關(guān)省份,并設(shè)置初始數(shù)量為0
monster = [
['廣東', 0],
['北京', 0],
['上海', 0],
['臺灣', 0],
['湖南', 0],
['浙江', 0],
['甘肅', 0],
['黑龍江', 0],
['江蘇', 0]
]
def data_filling(array):
'''
作用:給數(shù)組數(shù)據(jù)填充隨機數(shù)
'''
for i in array:
# 隨機生成1到1000的隨機數(shù)
i[1] = random.randint(1,1000)
data_filling(ultraman)
data_filling(monster)
def create_china_map():
(
Map()
.add(
series_name="商家A",
data_pair=ultraman,
maptype="china",
# 是否默認(rèn)選中,默認(rèn)為True
is_selected=True,
# 是否啟用鼠標(biāo)滾輪縮放和拖動平移,默認(rèn)為True
is_roam=True,
# 是否顯示圖形標(biāo)記,默認(rèn)為True
is_map_symbol_show=False,
# 圖元樣式配置
itemstyle_opts={
# 常規(guī)顯示
"normal": {"areaColor": "white", "borderColor": "red"},
# 強調(diào)顏色
"emphasis": {"areaColor": "pink"}
}
)
.add(
series_name="商家B",
data_pair=monster,
maptype="china",
)
# 全局配置項
.set_global_opts(
# 設(shè)置標(biāo)題
title_opts=opts.TitleOpts(title="中國地圖"),
# 設(shè)置標(biāo)準(zhǔn)顯示
visualmap_opts=opts.VisualMapOpts(max_=1000, is_piecewise=False)
)
# 系列配置項
.set_series_opts(
# 標(biāo)簽名稱顯示,默認(rèn)為True
label_opts=opts.LabelOpts(is_show=True, color="blue")
)
# 生成本地html文件
.render("中國地圖.html")
)
#調(diào)用自定義函數(shù)
create_china_map()

12、pyecharts繪制世界地圖
from pyecharts import options as opts
from pyecharts.charts import Map
import random
# 設(shè)置商家A所存在的相關(guān)國家,并設(shè)置初始數(shù)量為0
ultraman = [
['Russia', 0],
['China', 0],
['United States', 0],
['Australia', 0]
]
# 設(shè)置商家B存在的相關(guān)國家,并設(shè)置初始數(shù)量為0
monster = [
['India', 0],
['Canada', 0],
['France', 0],
['Brazil', 0]
]
def data_filling(array):
for i in array:
# 隨機生成1到1000的隨機數(shù)
i[1] = random.randint(1,1000)
print(i)
data_filling(ultraman)
data_filling(monster)
def create_world_map():
'''
作用:生成世界地圖
'''
( # 大小設(shè)置
Map()
.add(
series_name="商家A",
data_pair=ultraman,
maptype="world",
)
.add(
series_name="商家B",
data_pair=monster,
maptype="world",
)
# 全局配置項
.set_global_opts(
# 設(shè)置標(biāo)題
title_opts=opts.TitleOpts(title="世界地圖"),
# 設(shè)置標(biāo)準(zhǔn)顯示
visualmap_opts=opts.VisualMapOpts(max_=1000, is_piecewise=False),
)
# 系列配置項
.set_series_opts(
# 標(biāo)簽名稱顯示,默認(rèn)為True
label_opts=opts.LabelOpts(is_show=False, color="blue")
)
# 生成本地html文件
.render("世界地圖.html")
)
create_world_map()

總結(jié)
到此這篇關(guān)于用pyecharts繪制各種圖表的文章就介紹到這了,更多相關(guān)pyecharts繪制圖表案例內(nèi)容請搜索腳本之家以前的文章或繼續(xù)瀏覽下面的相關(guān)文章希望大家以后多多支持腳本之家!
您可能感興趣的文章:
- Python數(shù)據(jù)可視化 pyecharts實現(xiàn)各種統(tǒng)計圖表過程詳解
- python的pyecharts繪制各種圖表詳細(xì)(附代碼)
- 一文教你用Pyecharts做交互圖表
- Python數(shù)據(jù)可視化之基于pyecharts實現(xiàn)的地理圖表的繪制
- Python+pyecharts繪制交互式可視化圖表
- 詳解如何基于Pyecharts繪制常見的直角坐標(biāo)系圖表
- Python使用pyecharts控件繪制圖表
- Python繪制地理圖表可視化神器pyecharts
- Python可視化神器pyecharts繪制地理圖表
- Python可視化神器pyecharts之繪制地理圖表練習(xí)
- Pyecharts之特殊圖表的實現(xiàn)示例
相關(guān)文章
Python內(nèi)置數(shù)據(jù)結(jié)構(gòu)列表與元組示例詳解
這篇文章主要給大家介紹了關(guān)于Python內(nèi)置數(shù)據(jù)結(jié)構(gòu)列表與元組的相關(guān)資料,列表是順序存儲的數(shù)據(jù)結(jié)構(gòu),類似于數(shù)據(jù)結(jié)構(gòu)中的順序表,在存儲上是相連的一大塊內(nèi)存空間,在物理和邏輯上都是連續(xù)的,需要的朋友可以參考下2021-08-08
Python使用Pandas庫實現(xiàn)MySQL數(shù)據(jù)庫讀寫
本次分享將介紹如何在Python中使用Pandas庫實現(xiàn)MySQL數(shù)據(jù)庫的讀寫,有需要的朋友可以借鑒參考下,希望能夠有所幫助,祝大家多多進(jìn)步,早日升職加薪2023-08-08
導(dǎo)入tensorflow:ImportError: libcublas.so.9.0 報錯
這篇文章主要介紹了導(dǎo)入tensorflow:ImportError: libcublas.so.9.0 報錯,文中通過示例代碼介紹的非常詳細(xì),對大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價值,需要的朋友們下面隨著小編來一起學(xué)習(xí)學(xué)習(xí)吧2020-01-01
python 實現(xiàn)得到當(dāng)前時間偏移day天后的日期方法
今天小編就為大家分享一篇python 實現(xiàn)得到當(dāng)前時間偏移day天后的日期方法,具有很好的參考價值,希望對大家有所幫助。一起跟隨小編過來看看吧2018-12-12
python使用adbapi實現(xiàn)MySQL數(shù)據(jù)庫的異步存儲
這篇文章主要為大家詳細(xì)介紹了python使用adbapi實現(xiàn)MySQL數(shù)據(jù)庫的異步存儲,具有一定的參考價值,感興趣的小伙伴們可以參考一下2019-03-03

