Python計(jì)算圖片數(shù)據(jù)集的均值方差示例詳解
前言
在做圖像處理的時(shí)候,有時(shí)候需要得到整個(gè)數(shù)據(jù)集的均值方差數(shù)值,以下代碼可以解決你的煩惱:
(做這個(gè)之前一定保證所有的圖片都是統(tǒng)一尺寸,不然算出來不對(duì),我的代碼里設(shè)計(jì)的是512*512,可以自己調(diào)整,同一尺寸的代碼我也有:
Python批量reshape圖片
# -*- coding: utf-8 -*-
"""
Created on Thu Aug 23 16:06:35 2018
@author: libo
"""
from PIL import Image
import os
def image_resize(image_path, new_path): # 統(tǒng)一圖片尺寸
print('============>>修改圖片尺寸')
for img_name in os.listdir(image_path):
img_path = image_path + "/" + img_name # 獲取該圖片全稱
image = Image.open(img_path) # 打開特定一張圖片
image = image.resize((512, 512)) # 設(shè)置需要轉(zhuǎn)換的圖片大小
# process the 1 channel image
image.save(new_path + '/'+ img_name)
print("end the processing!")
if __name__ == '__main__':
print("ready for :::::::: ")
ori_path = r"Z:\pycharm_projects\ssd\VOC2007\JPEGImages" # 輸入圖片的文件夾路徑
new_path = 'Z:/pycharm_projects/ssd/VOC2007/reshape' # resize之后的文件夾路徑
image_resize(ori_path, new_path)import os
from PIL import Image
import matplotlib.pyplot as plt
import numpy as np
from scipy.misc import imread
filepath = r'Z:\pycharm_projects\ssd\VOC2007\reshape' # 數(shù)據(jù)集目錄
pathDir = os.listdir(filepath)
R_channel = 0
G_channel = 0
B_channel = 0
for idx in range(len(pathDir)):
filename = pathDir[idx]
img = imread(os.path.join(filepath, filename)) / 255.0
R_channel = R_channel + np.sum(img[:, :, 0])
G_channel = G_channel + np.sum(img[:, :, 1])
B_channel = B_channel + np.sum(img[:, :, 2])
num = len(pathDir) * 512 * 512 # 這里(512,512)是每幅圖片的大小,所有圖片尺寸都一樣
R_mean = R_channel / num
G_mean = G_channel / num
B_mean = B_channel / num
R_channel = 0
G_channel = 0
B_channel = 0
for idx in range(len(pathDir)):
filename = pathDir[idx]
img = imread(os.path.join(filepath, filename)) / 255.0
R_channel = R_channel + np.sum((img[:, :, 0] - R_mean) ** 2)
G_channel = G_channel + np.sum((img[:, :, 1] - G_mean) ** 2)
B_channel = B_channel + np.sum((img[:, :, 2] - B_mean) ** 2)
R_var = np.sqrt(R_channel / num)
G_var = np.sqrt(G_channel / num)
B_var = np.sqrt(B_channel / num)
print("R_mean is %f, G_mean is %f, B_mean is %f" % (R_mean, G_mean, B_mean))
print("R_var is %f, G_var is %f, B_var is %f" % (R_var, G_var, B_var))可能有點(diǎn)慢,慢慢等著就行。。。。。。。
最后得到的結(jié)果是介個(gè)

參考
計(jì)算數(shù)據(jù)集均值和方差
import os
from PIL import Image
import matplotlib.pyplot as plt
import numpy as np
from scipy.misc import imread
filepath = ‘/home/JPEGImages‘ # 數(shù)據(jù)集目錄
pathDir = os.listdir(filepath)
R_channel = 0
G_channel = 0
B_channel = 0
for idx in xrange(len(pathDir)):
filename = pathDir[idx]
img = imread(os.path.join(filepath, filename))
R_channel = R_channel + np.sum(img[:,:,0])
G_channel = G_channel + np.sum(img[:,:,1])
B_channel = B_channel + np.sum(img[:,:,2])
num = len(pathDir) * 384 * 512 # 這里(384,512)是每幅圖片的大小,所有圖片尺寸都一樣
R_mean = R_channel / num
G_mean = G_channel / num
B_mean = B_channel / numR_channel = 0 G_channel = 0 B_channel = 0
for idx in xrange(len(pathDir)):
filename = pathDir[idx]
img = imread(os.path.join(filepath, filename))
R_channel = R_channel + np.sum((img[:,:,0] - R_mean)**2)
G_channel = G_channel + np.sum((img[:,:,1] - G_mean)**2)
B_channel = B_channel + np.sum((img[:,:,2] - B_mean)**2)
R_var = R_channel / num
G_var = G_channel / num
B_var = B_channel / num
print("R_mean is %f, G_mean is %f, B_mean is %f" % (R_mean, G_mean, B_mean))
print("R_var is %f, G_var is %f, B_var is %f" % (R_var, G_var, B_var))以上就是Python計(jì)算圖片數(shù)據(jù)集的均值方差示例詳解的詳細(xì)內(nèi)容,更多關(guān)于Python計(jì)算圖片數(shù)據(jù)集均值方差的資料請(qǐng)關(guān)注腳本之家其它相關(guān)文章!
相關(guān)文章
Python?Pandas學(xué)習(xí)之series的二元運(yùn)算詳解
二元運(yùn)算是指由兩個(gè)元素形成第三個(gè)元素的一種規(guī)則,例如數(shù)的加法及乘法;更一般地,由兩個(gè)集合形成第三個(gè)集合的產(chǎn)生方法或構(gòu)成規(guī)則稱為二次運(yùn)算。本文將詳細(xì)講講Pandas中series的二元運(yùn)算,感興趣的可以了解一下2022-09-09
python django 實(shí)現(xiàn)驗(yàn)證碼的功能實(shí)例代碼
本篇文章主要介紹了python django 實(shí)現(xiàn)驗(yàn)證碼的功能實(shí)例代碼,具有一定的參考價(jià)值,感興趣的小伙伴們可以參考一下2017-05-05
Python實(shí)現(xiàn)的排列組合計(jì)算操作示例
這篇文章主要介紹了Python實(shí)現(xiàn)的排列組合計(jì)算操作,涉及Python數(shù)學(xué)運(yùn)算的相關(guān)函數(shù)與使用技巧,需要的朋友可以參考下2017-10-10
python從入門到精通 windows安裝python圖文教程
這篇文章主要為大家詳細(xì)介紹了python從入門到精通,windows安裝python圖文教程,具有一定的參考價(jià)值,感興趣的小伙伴們可以參考一下2019-05-05
Python實(shí)現(xiàn)讀取Linux系統(tǒng)的CPU以及內(nèi)存占用
這篇文章主要為大家詳細(xì)介紹了如何利用Python語言實(shí)現(xiàn)Linux系統(tǒng)的CPU以及內(nèi)存占用,文中的示例代碼講解詳細(xì),具有一定的學(xué)習(xí)價(jià)值,需要的可以收藏一下2023-05-05

