Python人工智能實(shí)戰(zhàn)之以圖搜圖的實(shí)現(xiàn)
前言
基于vgg網(wǎng)絡(luò)和Keras深度學(xué)習(xí)框架的以圖搜圖功能實(shí)現(xiàn)。
一、實(shí)驗(yàn)要求
給出一張圖像后,在整個(gè)數(shù)據(jù)集中(至少100個(gè)樣本)找到與這張圖像相似的圖像(至少5張),并把圖像有順序的展示。
二、環(huán)境配置
解釋器:python3.10
編譯器:Pycharm
必用配置包:
numpy、h5py、matplotlib、keras、pillow
三、代碼文件
1、vgg.py
# -*- coding: utf-8 -*-
import numpy as np
from numpy import linalg as LA
from keras.applications.vgg16 import VGG16
from keras.preprocessing import image
from keras.applications.vgg16 import preprocess_input as preprocess_input_vgg
class VGGNet:
def __init__(self):
self.input_shape = (224, 224, 3)
self.weight = 'imagenet'
self.pooling = 'max'
self.model_vgg = VGG16(weights = self.weight, input_shape = (self.input_shape[0], self.input_shape[1], self.input_shape[2]), pooling = self.pooling, include_top = False)
self.model_vgg.predict(np.zeros((1, 224, 224 , 3)))
#提取vgg16最后一層卷積特征
def vgg_extract_feat(self, img_path):
img = image.load_img(img_path, target_size=(self.input_shape[0], self.input_shape[1]))
img = image.img_to_array(img)
img = np.expand_dims(img, axis=0)
img = preprocess_input_vgg(img)
feat = self.model_vgg.predict(img)
# print(feat.shape)
norm_feat = feat[0]/LA.norm(feat[0])
return norm_feat2、index.py
# -*- coding: utf-8 -*-
import os
import h5py
import numpy as np
import argparse
from vgg import VGGNet
def get_imlist(path):
return [os.path.join(path, f) for f in os.listdir(path) if f.endswith('.jpg')]
if __name__ == "__main__":
database = r'D:\pythonProject5\flower_roses'
index = 'vgg_featureCNN.h5'
img_list = get_imlist(database)
print(" feature extraction starts")
feats = []
names = []
model = VGGNet()
for i, img_path in enumerate(img_list):
norm_feat = model.vgg_extract_feat(img_path) # 修改此處改變提取特征的網(wǎng)絡(luò)
img_name = os.path.split(img_path)[1]
feats.append(norm_feat)
names.append(img_name)
print("extracting feature from image No. %d , %d images in total" % ((i + 1), len(img_list)))
feats = np.array(feats)
output = index
print(" writing feature extraction results ...")
h5f = h5py.File(output, 'w')
h5f.create_dataset('dataset_1', data=feats)
# h5f.create_dataset('dataset_2', data = names)
h5f.create_dataset('dataset_2', data=np.string_(names))
h5f.close()3、test.py
# -*- coding: utf-8 -*-
from vgg import VGGNet
import numpy as np
import h5py
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
import argparse
query = r'D:\pythonProject5\rose\red_rose.jpg'
index = 'vgg_featureCNN.h5'
result = r'D:\pythonProject5\flower_roses'
# read in indexed images' feature vectors and corresponding image names
h5f = h5py.File(index, 'r')
# feats = h5f['dataset_1'][:]
feats = h5f['dataset_1'][:]
print(feats)
imgNames = h5f['dataset_2'][:]
print(imgNames)
h5f.close()
print(" searching starts")
queryImg = mpimg.imread(query)
plt.title("Query Image")
plt.imshow(queryImg)
plt.show()
# init VGGNet16 model
model = VGGNet()
# extract query image's feature, compute simlarity score and sort
queryVec = model.vgg_extract_feat(query) # 修改此處改變提取特征的網(wǎng)絡(luò)
print(queryVec.shape)
print(feats.shape)
scores = np.dot(queryVec, feats.T)
rank_ID = np.argsort(scores)[::-1]
rank_score = scores[rank_ID]
# print (rank_ID)
print(rank_score)
# number of top retrieved images to show
maxres = 6 # 檢索出6張相似度最高的圖片
imlist = []
for i, index in enumerate(rank_ID[0:maxres]):
imlist.append(imgNames[index])
print(type(imgNames[index]))
print("image names: " + str(imgNames[index]) + " scores: %f" % rank_score[i])
print("top %d images in order are: " % maxres, imlist)
# show top #maxres retrieved result one by one
for i, im in enumerate(imlist):
image = mpimg.imread(result + "/" + str(im, 'utf-8'))
plt.title("search output %d" % (i + 1))
plt.imshow(np.uint8(image))
f = plt.gcf() # 獲取當(dāng)前圖像
f.savefig(r'D:\pythonProject5\result\{}.jpg'.format(i),dpi=100)
#f.clear() # 釋放內(nèi)存
plt.show()四、演示




1、項(xiàng)目文件夾

數(shù)據(jù)集

結(jié)果(運(yùn)行前)

原圖

2、相似度排序輸出

3、保存結(jié)果

五、尾聲
分享一個(gè)實(shí)用又簡(jiǎn)單的爬蟲代碼,搜圖頂呱呱!
import os
import time
import requests
import re
def imgdata_set(save_path,word,epoch):
q=0 #停止爬取圖片條件
a=0 #圖片名稱
while(True):
time.sleep(1)
url="https://image.baidu.com/search/flip?tn=baiduimage&ie=utf-8&word={}&pn={}&ct=&ic=0&lm=-1&width=0&height=0".format(word,q)
#word=需要搜索的名字
headers={
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/88.0.4324.96 Safari/537.36 Edg/88.0.705.56'
}
response=requests.get(url,headers=headers)
# print(response.request.headers)
html=response.text
# print(html)
urls=re.findall('"objURL":"(.*?)"',html)
# print(urls)
for url in urls:
print(a) #圖片的名字
response = requests.get(url, headers=headers)
image=response.content
with open(os.path.join(save_path,"{}.jpg".format(a)),'wb') as f:
f.write(image)
a=a+1
q=q+20
if (q/20)>=int(epoch):
break
if __name__=="__main__":
save_path = input('你想保存的路徑:')
word = input('你想要下載什么圖片?請(qǐng)輸入:')
epoch = input('你想要下載幾輪圖片?請(qǐng)輸入(一輪為60張左右圖片):') # 需要迭代幾次圖片
imgdata_set(save_path, word, epoch)到此這篇關(guān)于Python人工智能實(shí)戰(zhàn)之以圖搜圖的實(shí)現(xiàn)的文章就介紹到這了,更多相關(guān)Python以圖搜圖內(nèi)容請(qǐng)搜索腳本之家以前的文章或繼續(xù)瀏覽下面的相關(guān)文章希望大家以后多多支持腳本之家!
相關(guān)文章
python 多進(jìn)程并行編程 ProcessPoolExecutor的實(shí)現(xiàn)
這篇文章主要介紹了python 多進(jìn)程并行編程 ProcessPoolExecutor的實(shí)現(xiàn),文中通過(guò)示例代碼介紹的非常詳細(xì),對(duì)大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價(jià)值,需要的朋友們下面隨著小編來(lái)一起學(xué)習(xí)學(xué)習(xí)吧2019-10-10
python數(shù)據(jù)結(jié)構(gòu)之圖的實(shí)現(xiàn)方法
這篇文章主要介紹了python數(shù)據(jù)結(jié)構(gòu)之圖的實(shí)現(xiàn)方法,實(shí)例分析了Python圖的表示方法與常用尋路算法的實(shí)現(xiàn)技巧,需要的朋友可以參考下2015-07-07
Python機(jī)器學(xué)習(xí)實(shí)戰(zhàn)之k-近鄰算法的實(shí)現(xiàn)
k-近鄰算法采用測(cè)量不同特征值之間的距離方法進(jìn)行分類。這篇文章主要為大家介紹了如何通過(guò)python實(shí)現(xiàn)K近鄰算法,有需要的朋友可以借鑒參考下,希望能夠有所幫助2021-11-11
python2和python3實(shí)現(xiàn)在圖片上加漢字的方法
python2和python3實(shí)現(xiàn)在圖片上加漢字,最主要的區(qū)別還是內(nèi)部編碼方式不一樣導(dǎo)致的,在代碼上表現(xiàn)為些許的差別。這篇文章主要介紹了python2和python3實(shí)現(xiàn)在圖片上加漢字,需要的朋友可以參考下2019-08-08

