Python+OpenCV實現(xiàn)圖片中的圓形檢測
效果展示



中心的三個沒檢測到
import cv2
import numpy as np
import matplotlib.pyplot as plt
w = 20
h = 5
params = cv2.SimpleBlobDetector_Params()
# Setup SimpleBlobDetector parameters.
print('params')
print(params)
print(type(params))
# Filter by Area.
params.filterByArea = True
params.minArea = 10e1
params.maxArea = 10e3
params.minDistBetweenBlobs = 25
# params.filterByColor = True
params.filterByConvexity = False
# tweak these as you see fit
# Filter by Circularity
# params.filterByCircularity = False
# params.minCircularity = 0.2
# params.blobColor = 0
# # # Filter by Convexity
# params.filterByConvexity = True
# params.minConvexity = 0.87
# Filter by Inertia
# params.filterByInertia = True
# params.filterByInertia = False
# params.minInertiaRatio = 0.01
# img = cv2.imread("circles/circels.jpg",1)
img = cv2.imread("circles/Snap_001.jpg",1)
gray= cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
# Detect blobs.
# image = cv2.resize(gray_img, (int(img.shape[1]/4),int(img.shape[0]/4)), 1, 1, cv2.INTER_LINEAR)
# image = cv2.resize(gray_img, dsize=None, fx=0.25, fy=0.25, interpolation=cv2.INTER_LINEAR)
minThreshValue = 120
_, gray = cv2.threshold(gray, minThreshValue, 255, cv2.THRESH_BINARY)
gray = cv2.resize(gray, dsize=None, fx=2, fy=2, interpolation=cv2.INTER_LINEAR)
# plt.imshow(gray)
# cv2.imshow("gray",gray)
detector = cv2.SimpleBlobDetector_create(params)
keypoints = detector.detect(gray)
print(len(keypoints))
fig = plt.figure()
# im_with_keypoints = cv2.drawKeypoints(gray, keypoints, np.array([]), (0, 0, 255), cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS)
im_with_keypoints = cv2.drawKeypoints(gray, keypoints, np.array([]), (0, 0, 255), cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS)
plt.imshow(cv2.cvtColor(im_with_keypoints, cv2.COLOR_BGR2RGB),interpolation='bicubic')
fname = "key points"
titlestr = '%s found %d keypoints' % (fname, len(keypoints))
plt.title(titlestr)
plt.show()
# cv2.imshow("graykey",gray)
# cv2.waitKey()
fig.canvas.set_window_title(titlestr)
ret, corners = cv2.findCirclesGrid(gray, (w, h), flags=(cv2.CALIB_CB_SYMMETRIC_GRID + cv2.CALIB_CB_CLUSTERING ), blobDetector=detector )
if corners is not None:
cv2.drawChessboardCorners(img, (w, h), corners, corners is not None)
print("find blob")
# # cv2.imshow('findCorners', img)
# cv2.waitKey()
plt.imshow(img)
plt.show()以上就是Python+OpenCV實現(xiàn)圖片中的圓形檢測的詳細內(nèi)容,更多關(guān)于Python OpenCV圓形檢測的資料請關(guān)注腳本之家其它相關(guān)文章!
相關(guān)文章
pytorch實現(xiàn)mnist手寫彩色數(shù)字識別
這篇文章主要介紹了pytorch-實現(xiàn)mnist手寫彩色數(shù)字識別,文章圍繞主題展開詳細的內(nèi)容姐介紹,具有一定的參考價值,需要的小伙伴可以參考一下2022-09-09
Python測試函數(shù)出現(xiàn)AssertionError:None?!=?‘Janis?Joplin‘問題及解決
這篇文章主要介紹了Python測試函數(shù)出現(xiàn)AssertionError:None?!=?‘Janis?Joplin‘問題及解決方案,具有很好的參考價值,希望對大家有所幫助,如有錯誤或未考慮完全的地方,望不吝賜教2023-09-09
解決Tensorflow2.0 tf.keras.Model.load_weights() 報錯處理問題
這篇文章主要介紹了解決Tensorflow2.0 tf.keras.Model.load_weights() 報錯處理問題,具有很好的參考價值,希望對大家有所幫助。一起跟隨想過來看看吧2020-06-06
python之broadcast和numpy.sum()函數(shù)用法及說明
這篇文章主要介紹了python之broadcast和numpy.sum()函數(shù)用法及說明,具有很好的參考價值,希望對大家有所幫助。如有錯誤或未考慮完全的地方,望不吝賜教2023-06-06
Python在字典中獲取帶權(quán)重的隨機值實現(xiàn)方式
這篇文章主要介紹了Python在字典中獲取帶權(quán)重的隨機值,本文通過實例代碼給大家介紹的非常詳細,對大家的學(xué)習(xí)或工作具有一定的參考借鑒價值,需要的朋友可以參考下2022-11-11
django項目用higcharts統(tǒng)計最近七天文章點擊量
這篇文章主要介紹了django項目用higcharts統(tǒng)計最近七天文章點擊量,本文給大家介紹的非常詳細,具有一定的參考借鑒價值,需要的朋友可以參考下2019-08-08

