python使用mediapiple+opencv識(shí)別視頻人臉的實(shí)現(xiàn)
1、安裝
pip install mediapipe
2、代碼實(shí)現(xiàn)
# -*- coding: utf-8 -*-
"""
@Time : 2022/3/18 14:43
@Author : liwei
@Description:
"""
import cv2
import mediapipe as mp
mp_drawing = mp.solutions.drawing_utils
mp_face_mesh = mp.solutions.face_mesh
mp_face_detection = mp.solutions.face_detection
# 繪制人臉畫像的點(diǎn)和線的大小粗細(xì)及顏色(默認(rèn)為白色)
drawing_spec = mp_drawing.DrawingSpec(thickness=1, circle_radius=1)
cap = cv2.VideoCapture("E:\\video\\test\\test.mp4")# , cv2.CAP_DSHOW
# For webcam input:
# cap = cv2.VideoCapture(0)
with mp_face_detection.FaceDetection(
model_selection=0, min_detection_confidence=0.5) as face_detection:
while cap.isOpened():
success, image = cap.read()
if not success:
print("Ignoring empty camera frame.")
# If loading a video, use 'break' instead of 'continue'.
break
# To improve performance, optionally mark the image as not writeable to
# pass by reference.
image.flags.writeable = False
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
results = face_detection.process(image)
# Draw the face detection annotations on the image.
image.flags.writeable = True
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
if results.detections:
box = results.detections[0].location_data.relative_bounding_box
xmin = box.xmin
ymin = box.ymin
width = box.width
height = box.height
xmax = box.xmin + width
ymax = ymin + height
cv2.rectangle(image, (int(xmin * image.shape[1]),int(ymin* image.shape[0])), (int(xmax* image.shape[1]), int(ymax* image.shape[0])), (0, 0, 255), 2)
# for detection in results.detections:
# mp_drawing.draw_detection(image, detection)
# Flip the image horizontally for a selfie-view display.
cv2.imshow('MediaPipe Face Detection', cv2.flip(image, 1))
if cv2.waitKey(5) & 0xFF == 27:
break
cap.release()效果

3、更新 mediapiple+threadpool+opencv實(shí)現(xiàn)圖片人臉采集效率高于dlib
# -*- coding: utf-8 -*-
"""
@Time : 2022/3/23 13:43
@Author : liwei
@Description:
"""
import cv2 as cv
import mediapipe as mp
import os
import threadpool
mp_drawing = mp.solutions.drawing_utils
mp_face_mesh = mp.solutions.face_mesh
mp_face_detection = mp.solutions.face_detection
savePath = "E:\\saveImg\\"
basePath = "E:\\img\\clear\\20220301\\"
def cut_face_img(file):
# print(basePath + file)
img = cv.imread(basePath + file)
with mp_face_detection.FaceDetection(
model_selection=0, min_detection_confidence=0.5) as face_detection:
img.flags.writeable = False
image = cv.cvtColor(img, cv.COLOR_RGB2BGR)
results = face_detection.process(image)
image = cv.cvtColor(image, cv.COLOR_RGB2BGR)
image.flags.writeable = True
if results.detections:
box = results.detections[0].location_data.relative_bounding_box
xmin = box.xmin
ymin = box.ymin
width = box.width
height = box.height
xmax = box.xmin + width
ymax = ymin + height
x1, x2, y1, y2 = int(xmax * image.shape[1]), int(xmin * image.shape[1]), int(
ymax * image.shape[0]), int(ymin * image.shape[0])
cropped = image[y2:y1, x2:x1]
if cropped.shape[1] > 200:
cv.imwrite(savePath + file, cropped)
print(savePath + file)
if __name__ == '__main__':
data = os.listdir(basePath)
pool = threadpool.ThreadPool(3)
requests = threadpool.makeRequests(cut_face_img, data)
[pool.putRequest(req) for req in requests]
pool.wait()
到此這篇關(guān)于python使用mediapiple+opencv識(shí)別視頻人臉的實(shí)現(xiàn)的文章就介紹到這了,更多相關(guān)mediapiple opencv識(shí)別視頻人臉內(nèi)容請(qǐng)搜索腳本之家以前的文章或繼續(xù)瀏覽下面的相關(guān)文章希望大家以后多多支持腳本之家!
相關(guān)文章
解決Python下json.loads()中文字符出錯(cuò)的問題
今天小編就為大家分享一篇解決Python下json.loads()中文字符出錯(cuò)的問題,具有很好的參考價(jià)值,希望對(duì)大家有所幫助。一起跟隨小編過來看看吧2018-12-12
pandas常用表連接merge/concat/join/append詳解
使用python的pandas庫可以很容易幫你搞定,而且性能也是很出色的;百萬級(jí)的表關(guān)聯(lián),可以秒出,本文給大家分享pandas常用表連接merge/concat/join/append詳解,感興趣的朋友跟隨小編一起看看吧2023-02-02
python飛機(jī)大戰(zhàn)pygame游戲之?dāng)硻C(jī)出場實(shí)現(xiàn)方法詳解
這篇文章主要介紹了python飛機(jī)大戰(zhàn)pygame游戲之?dāng)硻C(jī)出場實(shí)現(xiàn)方法,結(jié)合實(shí)例形式詳細(xì)分析了Python使用pygame模塊實(shí)現(xiàn)飛機(jī)大戰(zhàn)游戲中敵機(jī)出場相關(guān)實(shí)現(xiàn)技巧,需要的朋友可以參考下2019-12-12
僅用50行Python代碼實(shí)現(xiàn)一個(gè)簡單的代理服務(wù)器
這篇文章主要介紹了僅用50行Python代碼實(shí)現(xiàn)一個(gè)簡單的代理服務(wù)器,利用最簡單的client->proxy->forward原理在socket模塊下編寫,需要的朋友可以參考下2015-04-04
Python應(yīng)用實(shí)現(xiàn)處理excel數(shù)據(jù)過程解析
這篇文章主要介紹了Python應(yīng)用實(shí)現(xiàn)處理excel數(shù)據(jù)過程解析,文中通過示例代碼介紹的非常詳細(xì),對(duì)大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價(jià)值,需要的朋友可以參考下2020-06-06

