Python股票數(shù)據(jù)可視化代碼詳解
import numpy as np import pandas as pd from pandas_datareader import data import datetime as dt
數(shù)據(jù)準(zhǔn)備
'''
獲取國(guó)內(nèi)股票數(shù)據(jù)的方式是:“股票代碼”+“對(duì)應(yīng)股市”(港股為.hk,A股為.ss)
例如騰訊是港股是:0700.hk
'''
#字典:6家公司的股票
# gafataDict={'谷歌':'GOOG','亞馬遜':'AMZN','Facebook':'FB', '蘋果':'AAPL','阿里巴巴':'BABA','騰訊':'0700.hk'}
'''
定義函數(shù)
函數(shù)功能:計(jì)算股票漲跌幅=(現(xiàn)在股價(jià)-買入價(jià)格)/買入價(jià)格
輸入?yún)?shù):column是收盤價(jià)這一列的數(shù)據(jù)
返回?cái)?shù)據(jù):漲跌幅
'''
def change(column):
# 買入價(jià)格
buyPrice=column[0]
# 現(xiàn)在股價(jià)
curPrice=column[column.size-1]
priceChange=(curPrice-buyPrice)/buyPrice
# 判斷股票是上漲還是下跌
if priceChange>0:
print('股票累計(jì)上漲=',round(priceChange*100,2),'%')
elif priceChange==0:
print('股票無(wú)變化=',round(priceChange*100,2)*100,'%')
else:
print('股票累計(jì)下跌=',round(priceChange*100,2)*100,'%')
# 返回?cái)?shù)據(jù)
return priceChange
'''
三星電子
每日股票價(jià)位信息
Open:開盤價(jià)
High:最高加
Low:最低價(jià)
Close:收盤價(jià)
Volume:成交量
因雅虎連接不到,僅以三星作為獲取數(shù)據(jù)示例
'''
sxDf = data.DataReader('005930', 'naver', start='2021-01-01', end='2022-01-01')
sxDf.head()
| Open | High | Low | Close | Volume | |
|---|---|---|---|---|---|
| Date | |||||
| 2021-01-04 | 81000 | 84400 | 80200 | 83000 | 38655276 |
| 2021-01-05 | 81600 | 83900 | 81600 | 83900 | 35335669 |
| 2021-01-06 | 83300 | 84500 | 82100 | 82200 | 42089013 |
| 2021-01-07 | 82800 | 84200 | 82700 | 82900 | 32644642 |
| 2021-01-08 | 83300 | 90000 | 83000 | 88800 | 59013307 |
sxDf.info()
<class 'pandas.core.frame.DataFrame'> DatetimeIndex: 248 entries, 2021-01-04 to 2021-12-30 Data columns (total 5 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 Open 248 non-null object 1 High 248 non-null object 2 Low 248 non-null object 3 Close 248 non-null object 4 Volume 248 non-null object dtypes: object(5) memory usage: 11.6+ KB
sxDf.iloc[:,0:4]=sxDf.iloc[:,0:4].astype('float')
sxDf.iloc[:,-1]=sxDf.iloc[:,-1].astype('int')
sxDf.info()
<class 'pandas.core.frame.DataFrame'>DatetimeIndex: 248 entries, 2021-01-04 to 2021-12-30Data columns (total 5 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 Open 248 non-null float64 1 High 248 non-null float64 2 Low 248 non-null float64 3 Close 248 non-null float64 4 Volume 248 non-null int32 dtypes: float64(4), int32(1)memory usage: 10.7 KB<class 'pandas.core.frame.DataFrame'> DatetimeIndex: 248 entries, 2021-01-04 to 2021-12-30 Data columns (total 5 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 Open 248 non-null float64 1 High 248 non-null float64 2 Low 248 non-null float64 3 Close 248 non-null float64 4 Volume 248 non-null int32 dtypes: float64(4), int32(1) memory usage: 10.7 KB
阿里巴巴
# 讀取數(shù)據(jù) AliDf=pd.read_excel(r'C:\Users\EDY\Desktop\吧哩吧啦\學(xué)習(xí)\Untitled Folder\阿里巴巴2017年股票數(shù)據(jù).xlsx',index_col='Date') AliDf.tail()
| Open | High | Low | Close | Adj Close | Volume | |
|---|---|---|---|---|---|---|
| Date | ||||||
| 2017-12-22 | 175.839996 | 176.660004 | 175.039993 | 176.289993 | 176.289993 | 12524700 |
| 2017-12-26 | 174.550003 | 175.149994 | 171.729996 | 172.330002 | 172.330002 | 12913800 |
| 2017-12-27 | 172.289993 | 173.869995 | 171.729996 | 172.970001 | 172.970001 | 10152300 |
| 2017-12-28 | 173.039993 | 173.529999 | 171.669998 | 172.300003 | 172.300003 | 9508100 |
| 2017-12-29 | 172.279999 | 173.669998 | 171.199997 | 172.429993 | 172.429993 | 9704600 |
# 查看基本信息及數(shù)據(jù)類型 AliDf.info()
<class 'pandas.core.frame.DataFrame'> DatetimeIndex: 251 entries, 2017-01-03 to 2017-12-29 Data columns (total 6 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 Open 251 non-null float64 1 High 251 non-null float64 2 Low 251 non-null float64 3 Close 251 non-null float64 4 Adj Close 251 non-null float64 5 Volume 251 non-null int64 dtypes: float64(5), int64(1) memory usage: 13.7 KB
# 計(jì)算漲跌幅 AliChange=change(AliDf['Close'])
股票累計(jì)上漲= 94.62 %
'''增加一列累計(jì)增長(zhǎng)百分比''' #一開始的股價(jià) Close1=AliDf['Close'][0] # # .apply(lambda x: format(x, '.2%')) AliDf['sum_pct_change']=AliDf['Close'].apply(lambda x: (x-Close1)/Close1) AliDf['sum_pct_change'].tail()
Date 2017-12-22 0.989729 2017-12-26 0.945034 2017-12-27 0.952257 2017-12-28 0.944695 2017-12-29 0.946162 Name: sum_pct_change, dtype: float64
谷歌
# 讀取數(shù)據(jù) GoogleDf=pd.read_excel(r'C:\Users\EDY\Desktop\吧哩吧啦\學(xué)習(xí)\Untitled Folder\谷歌2017年股票數(shù)據(jù).xlsx',index_col='Date') GoogleDf.tail()
| Open | High | Low | Close | Adj Close | Volume | |
|---|---|---|---|---|---|---|
| Date | ||||||
| 2017-12-22 | 1061.109985 | 1064.199951 | 1059.439941 | 1060.119995 | 1060.119995 | 755100 |
| 2017-12-26 | 1058.069946 | 1060.119995 | 1050.199951 | 1056.739990 | 1056.739990 | 760600 |
| 2017-12-27 | 1057.390015 | 1058.369995 | 1048.050049 | 1049.369995 | 1049.369995 | 1271900 |
| 2017-12-28 | 1051.599976 | 1054.750000 | 1044.770020 | 1048.140015 | 1048.140015 | 837100 |
| 2017-12-29 | 1046.719971 | 1049.699951 | 1044.900024 | 1046.400024 | 1046.400024 | 887500 |
# 計(jì)算漲跌幅 GoogleChange=change(GoogleDf['Close'])
股票累計(jì)上漲= 33.11 %
'''增加一列累計(jì)增長(zhǎng)百分比''' #一開始的股價(jià) Close1=GoogleDf['Close'][0] # # .apply(lambda x: format(x, '.2%')) GoogleDf['sum_pct_change']=GoogleDf['Close'].apply(lambda x: (x-Close1)/Close1) GoogleDf['sum_pct_change'].tail()
Date 2017-12-22 0.348513 2017-12-26 0.344213 2017-12-27 0.334839 2017-12-28 0.333274 2017-12-29 0.331061 Name: sum_pct_change, dtype: float64
蘋果
# 讀取數(shù)據(jù) AppleDf=pd.read_excel(r'C:\Users\EDY\Desktop\吧哩吧啦\學(xué)習(xí)\Untitled Folder\蘋果2017年股票數(shù)據(jù).xlsx',index_col='Date') AppleDf.tail()
| Open | High | Low | Close | Adj Close | Volume | |
|---|---|---|---|---|---|---|
| Date | ||||||
| 2017-12-22 | 174.679993 | 175.419998 | 174.500000 | 175.009995 | 174.299362 | 16349400 |
| 2017-12-26 | 170.800003 | 171.470001 | 169.679993 | 170.570007 | 169.877396 | 33185500 |
| 2017-12-27 | 170.100006 | 170.779999 | 169.710007 | 170.600006 | 169.907272 | 21498200 |
| 2017-12-28 | 171.000000 | 171.850006 | 170.479996 | 171.080002 | 170.385315 | 16480200 |
| 2017-12-29 | 170.520004 | 170.589996 | 169.220001 | 169.229996 | 168.542831 | 25999900 |
# 計(jì)算漲跌幅 AppleChange=change(AppleDf['Close'])
股票累計(jì)上漲= 45.7 %
'''增加一列累計(jì)增長(zhǎng)百分比''' #一開始的股價(jià) Close1=AppleDf['Close'][0] # # .apply(lambda x: format(x, '.2%')) AppleDf['sum_pct_change']=AppleDf['Close'].apply(lambda x: (x-Close1)/Close1) AppleDf['sum_pct_change'].tail()
Date 2017-12-22 0.506758 2017-12-26 0.468532 2017-12-27 0.468790 2017-12-28 0.472923 2017-12-29 0.456995 Name: sum_pct_change, dtype: float64
騰訊
# 讀取數(shù)據(jù) TencentDf=pd.read_excel(r'C:\Users\EDY\Desktop\吧哩吧啦\學(xué)習(xí)\Untitled Folder\騰訊2017年股票數(shù)據(jù).xlsx',index_col='Date') TencentDf.tail()
| Open | High | Low | Close | Adj Close | Volume | |
|---|---|---|---|---|---|---|
| Date | ||||||
| 2017-12-22 | 403.799988 | 405.799988 | 400.799988 | 405.799988 | 405.799988 | 16146080 |
| 2017-12-27 | 405.799988 | 407.799988 | 401.000000 | 401.200012 | 401.200012 | 16680601 |
| 2017-12-28 | 404.000000 | 408.200012 | 402.200012 | 408.200012 | 408.200012 | 11662053 |
| 2017-12-29 | 408.000000 | 408.000000 | 403.399994 | 406.000000 | 406.000000 | 16601658 |
| 2018-01-02 | 406.000000 | 406.000000 | 406.000000 | 406.000000 | 406.000000 | 0 |
# 讀取數(shù)據(jù) TencentDf=pd.read_excel(r'C:\Users\EDY\Desktop\吧哩吧啦\學(xué)習(xí)\Untitled Folder\騰訊2017年股票數(shù)據(jù).xlsx',index_col='Date') TencentDf.tail()
| Open | High | Low | Close | Adj Close | Volume | |
|---|---|---|---|---|---|---|
| Date | ||||||
| 2017-12-22 | 403.799988 | 405.799988 | 400.799988 | 405.799988 | 405.799988 | 16146080 |
| 2017-12-27 | 405.799988 | 407.799988 | 401.000000 | 401.200012 | 401.200012 | 16680601 |
| 2017-12-28 | 404.000000 | 408.200012 | 402.200012 | 408.200012 | 408.200012 | 11662053 |
| 2017-12-29 | 408.000000 | 408.000000 | 403.399994 | 406.000000 | 406.000000 | 16601658 |
| 2018-01-02 | 406.000000 | 406.000000 | 406.000000 | 406.000000 | 406.000000 | 0 |
# 計(jì)算漲跌幅 TencentChange=change(TencentDf['Close'])
股票累計(jì)上漲= 114.36 %
'''增加一列累計(jì)增長(zhǎng)百分比''' #一開始的股價(jià) Close1=TencentDf['Close'][0] # # .apply(lambda x: format(x, '.2%')) TencentDf['sum_pct_change']=TencentDf['Close'].apply(lambda x: (x-Close1)/Close1) TencentDf['sum_pct_change'].tail()
Date 2017-12-22 1.142555 2017-12-27 1.118268 2017-12-28 1.155227 2017-12-29 1.143611 2018-01-02 1.143611 Name: sum_pct_change, dtype: float64
亞馬遜
# 讀取數(shù)據(jù) AmazonDf=pd.read_excel(r'C:\Users\EDY\Desktop\吧哩吧啦\學(xué)習(xí)\Untitled Folder\亞馬遜2017年股票數(shù)據(jù).xlsx',index_col='Date') AmazonDf.tail()
| Open | High | Low | Close | Adj Close | Volume | |
|---|---|---|---|---|---|---|
| Date | ||||||
| 2017-12-22 | 1172.079956 | 1174.619995 | 1167.829956 | 1168.359985 | 1168.359985 | 1585100 |
| 2017-12-26 | 1168.359985 | 1178.319946 | 1160.550049 | 1176.760010 | 1176.760010 | 2005200 |
| 2017-12-27 | 1179.910034 | 1187.290039 | 1175.609985 | 1182.260010 | 1182.260010 | 1867200 |
| 2017-12-28 | 1189.000000 | 1190.099976 | 1184.380005 | 1186.099976 | 1186.099976 | 1841700 |
| 2017-12-29 | 1182.349976 | 1184.000000 | 1167.500000 | 1169.469971 | 1169.469971 | 2688400 |
# 計(jì)算漲跌幅 AmazonChange=change(AmazonDf['Close'])
股票累計(jì)上漲= 55.17 %
'''增加一列累計(jì)增長(zhǎng)百分比''' #一開始的股價(jià) Close1=AmazonDf['Close'][0] # # .apply(lambda x: format(x, '.2%')) AmazonDf['sum_pct_change']=AmazonDf['Close'].apply(lambda x: (x-Close1)/Close1) AmazonDf['sum_pct_change'].tail()
Date 2017-12-22 0.550228 2017-12-26 0.561373 2017-12-27 0.568671 2017-12-28 0.573766 2017-12-29 0.551700 Name: sum_pct_change, dtype: float64
# 讀取數(shù)據(jù) FacebookDf=pd.read_excel(r'C:\Users\EDY\Desktop\吧哩吧啦\學(xué)習(xí)\Untitled Folder\Facebook2017年股票數(shù)據(jù).xlsx',index_col='Date') FacebookDf.tail()
| Open | High | Low | Close | Adj Close | Volume | |
|---|---|---|---|---|---|---|
| Date | ||||||
| 2017-12-22 | 177.139999 | 177.529999 | 176.229996 | 177.199997 | 177.199997 | 8509500 |
| 2017-12-26 | 176.630005 | 177.000000 | 174.669998 | 175.990005 | 175.990005 | 8897300 |
| 2017-12-27 | 176.550003 | 178.440002 | 176.259995 | 177.619995 | 177.619995 | 9496100 |
| 2017-12-28 | 177.949997 | 178.940002 | 177.679993 | 177.919998 | 177.919998 | 12220800 |
| 2017-12-29 | 178.000000 | 178.850006 | 176.460007 | 176.460007 | 176.460007 | 10261500 |
# 計(jì)算漲跌幅 FacebookChange=change(FacebookDf['Close'])
股票累計(jì)上漲= 51.0 %
'''增加一列每日增長(zhǎng)百分比''' # .pct_change()返回變化百分比,第一行因沒(méi)有可對(duì)比的,返回Nan,填充為0 FacebookDf['pct_change']=FacebookDf['Close'].pct_change(1).fillna(0) FacebookDf['pct_change'].head()
Date 2017-01-03 0.000000 2017-01-04 0.015660 2017-01-05 0.016682 2017-01-06 0.022707 2017-01-09 0.012074 Name: pct_change, dtype: float64
'''增加一列累計(jì)增長(zhǎng)百分比''' #一開始的股價(jià) Close1=FacebookDf['Close'][0] # .apply(lambda x: format(x, '.2%')) FacebookDf['sum_pct_change']=FacebookDf['Close'].apply(lambda x: (x-Close1)/Close1) FacebookDf['sum_pct_change'].tail()
Date 2017-12-22 0.516344 2017-12-26 0.505990 2017-12-27 0.519938 2017-12-28 0.522506 2017-12-29 0.510012 Name: sum_pct_change, dtype: float64
數(shù)據(jù)可視化
import matplotlib.pyplot as plt
# 查看成交量與股價(jià)之間的關(guān)系
fig=plt.figure(figsize=(10,5))
AliDf.plot(x='Volume',y='Close',kind='scatter')
plt.xlabel('成交量')
plt.ylabel('股價(jià)')
plt.title('成交量與股價(jià)之間的關(guān)系')
plt.show()
<Figure size 720x360 with 0 Axes>
![[外鏈圖片轉(zhuǎn)存失敗,源站可能有防盜鏈機(jī)制,建議將圖片保存下來(lái)直接上傳(img-1KOh6B0o-1647329357200)(output_35_1.png)]](http://img.jbzj.com/file_images/article/202203/202203160939242.png)
# 查看各個(gè)參數(shù)之間的相關(guān)性,與股價(jià)與成交量之間呈中度相關(guān) AliDf.corr()
| Open | High | Low | Close | Adj Close | Volume | sum_pct_change | |
|---|---|---|---|---|---|---|---|
| Open | 1.000000 | 0.999281 | 0.998798 | 0.998226 | 0.998226 | 0.424686 | 0.998226 |
| High | 0.999281 | 1.000000 | 0.998782 | 0.999077 | 0.999077 | 0.432467 | 0.999077 |
| Low | 0.998798 | 0.998782 | 1.000000 | 0.999249 | 0.999249 | 0.401456 | 0.999249 |
| Close | 0.998226 | 0.999077 | 0.999249 | 1.000000 | 1.000000 | 0.415801 | 1.000000 |
| Adj Close | 0.998226 | 0.999077 | 0.999249 | 1.000000 | 1.000000 | 0.415801 | 1.000000 |
| Volume | 0.424686 | 0.432467 | 0.401456 | 0.415801 | 0.415801 | 1.000000 | 0.415801 |
| sum_pct_change | 0.998226 | 0.999077 | 0.999249 | 1.000000 | 1.000000 | 0.415801 | 1.000000 |
查看各個(gè)公司的股價(jià)平均值
AliDf['Close'].mean()
141.79179260159364
'''數(shù)據(jù)準(zhǔn)備'''
# 計(jì)算每家公司的收盤價(jià)平均值
Close_mean={'Alibaba':AliDf['Close'].mean(),
'Google':GoogleDf['Close'].mean(),
'Apple':AppleDf['Close'].mean(),
'Tencent':TencentDf['Close'].mean(),
'Amazon':AmazonDf['Close'].mean(),
'Facebook':FacebookDf['Close'].mean()}
CloseMeanSer=pd.Series(Close_mean)
CloseMeanSer.sort_values(ascending=False,inplace=True)
'''繪制柱狀圖'''
# 創(chuàng)建畫板
fig=plt.figure(figsize=(10,5))
# 繪圖
CloseMeanSer.plot(kind='bar')
# 設(shè)置x、y軸標(biāo)簽及標(biāo)題
plt.xlabel('公司')
plt.ylabel('股價(jià)平均值(美元)')
plt.title('2017年各公司股價(jià)平均值')
# 設(shè)置y周標(biāo)簽刻度
plt.yticks(np.arange(0,1100,100))
# 顯示y軸網(wǎng)格
plt.grid(True,axis='y')
# 顯示圖像
plt.show()
![[外鏈圖片轉(zhuǎn)存失敗,源站可能有防盜鏈機(jī)制,建議將圖片保存下來(lái)直接上傳(img-9HTafnSC-1647329357201)(output_39_0.png)]](http://img.jbzj.com/file_images/article/202203/202203160939243.png)
亞馬遜和谷歌的平均股價(jià)很高,遠(yuǎn)遠(yuǎn)超過(guò)其他4家,但是僅看平均值并不能代表什么,下面從分布和走勢(shì)方面查看
查看各公司股價(jià)分布情況
'''數(shù)據(jù)準(zhǔn)備'''
# 將6家公司的收盤價(jià)整合到一起
CloseCollectDf=pd.concat([AliDf['Close'],
GoogleDf['Close'],
AppleDf['Close'],
TencentDf['Close'],
AmazonDf['Close'],
FacebookDf['Close']],axis=1)
CloseCollectDf.columns=['Alibaba','Google','Apple','Tencent','Amazon','Facebook']
'''繪制箱型圖'''
# 創(chuàng)建畫板
fig=plt.figure(figsize=(20,10))
fig.suptitle('2017年各公司股價(jià)分布',fontsize=18)
# 子圖1
ax1=plt.subplot(121)
CloseCollectDf.plot(ax=ax1,kind='box')
plt.xlabel('公司')
plt.ylabel('股價(jià)(美元)')
plt.title('2017年各公司股價(jià)分布')
plt.grid(True,axis='y')
# 因谷歌和亞馬遜和兩外四家的差別較大,分開查看,
# 子圖2
ax2=plt.subplot(222)
CloseCollectDf[['Google','Amazon']].plot(ax=ax2,kind='box')
# 設(shè)置x、y軸標(biāo)簽及標(biāo)題
plt.ylabel('股價(jià)(美元)')
plt.title('2017年谷歌和亞馬遜股價(jià)分布')
# 設(shè)置y周標(biāo)簽刻度
# plt.yticks(np.arange(0,1300,100))
# 顯示y軸網(wǎng)格
plt.grid(True,axis='y')
# 子圖3
ax3=plt.subplot(224)
CloseCollectDf[['Alibaba','Apple','Tencent','Facebook']].plot(ax=ax3,kind='box')
# 設(shè)置x、y軸標(biāo)簽及標(biāo)題
plt.xlabel('公司')
plt.ylabel('股價(jià)(美元)')
plt.title('2017年阿里、蘋果、騰訊、Facebook股價(jià)分布')
# 設(shè)置y周標(biāo)簽刻度
# plt.yticks(np.arange(0,1300,100))
# 顯示y軸網(wǎng)格
plt.grid(True,axis='y')
plt.subplot
# 顯示圖像
plt.show()
![[外鏈圖片轉(zhuǎn)存失敗,源站可能有防盜鏈機(jī)制,建議將圖片保存下來(lái)直接上傳(img-mLAR9vw6-1647329357202)(output_42_0.png)]](http://img.jbzj.com/file_images/article/202203/202203160939244.png)
從箱型圖看,谷歌和亞馬遜的股價(jià)分布較廣,且中位數(shù)偏上,騰訊股價(jià)最為集中,波動(dòng)最小,相對(duì)穩(wěn)定。
股價(jià)走勢(shì)對(duì)比
# 創(chuàng)建畫板并設(shè)置大小,constrained_layout=True設(shè)置自動(dòng)調(diào)整子圖之間間距
fig=plt.figure(figsize=(15,10),constrained_layout=True)
# ax=plt.subplots(2,1,sharex=True)
fig.suptitle('股價(jià)走勢(shì)對(duì)比',fontsize=18)
'''繪制圖像1 '''
ax1=plt.subplot(211)
plt.plot(AliDf.index,AliDf['Close'],label='Alibaba')
plt.plot(GoogleDf.index,GoogleDf['Close'],label='Google')
plt.plot(AppleDf.index,AppleDf['Close'],label='Apple')
plt.plot(TencentDf.index,TencentDf['Close'],label='Tencent')
plt.plot(AmazonDf.index,AmazonDf['Close'],label='Amazon')
plt.plot(FacebookDf.index,FacebookDf['Close'],label='Facebook')
# # 設(shè)置xy軸標(biāo)簽
plt.xlabel('時(shí)間')
plt.ylabel('股價(jià)')
# 設(shè)置標(biāo)題
# plt.title('股價(jià)走勢(shì)對(duì)比')
# 圖例顯示位置、大小
plt.legend(loc='upper left',fontsize=12)
# 設(shè)置x,y軸間隔,設(shè)置旋轉(zhuǎn)角度,以免重疊
plt.xticks(AliDf.index[::10],rotation=45)
plt.yticks(np.arange(0, 1300, step=100))
# 顯示網(wǎng)格
plt.grid(True)
'''繪制圖像2'''
ax2=plt.subplot(212)
plt.plot(AliDf.index,AliDf['sum_pct_change'],label='Alibaba')
plt.plot(GoogleDf.index,GoogleDf['sum_pct_change'],label='Google')
plt.plot(AppleDf.index,AppleDf['sum_pct_change'],label='Apple')
plt.plot(TencentDf.index,TencentDf['sum_pct_change'],label='Tencent')
plt.plot(AmazonDf.index,AmazonDf['sum_pct_change'],label='Amazon')
plt.plot(FacebookDf.index,FacebookDf['sum_pct_change'],label='Facebook')
# 設(shè)置xy軸標(biāo)簽
plt.xlabel('時(shí)間')
plt.ylabel('累計(jì)增長(zhǎng)率')
# 設(shè)置標(biāo)題
# plt.title('股價(jià)走勢(shì)對(duì)比')
# 圖例顯示位置、大小
plt.legend(loc='upper left',fontsize=12)
# 設(shè)置x,y軸間隔,設(shè)置旋轉(zhuǎn)角度,以免重疊
plt.xticks(AliDf.index[::10],rotation=45)
plt.yticks(np.arange(0, 1.2, step=0.1))
# 顯示網(wǎng)格
plt.grid(True)
# 調(diào)整子圖間距,subplots_adjust(left=None, bottom=None, right=None, top=None,wspace=None, hspace=None)
# 顯示圖像
plt.show()
![[外鏈圖片轉(zhuǎn)存失敗,源站可能有防盜鏈機(jī)制,建議將圖片保存下來(lái)直接上傳(img-Kbzxx57e-1647329357202)(output_45_0.png)]](http://img.jbzj.com/file_images/article/202203/202203160939255.jpg)
可以看出,在2017年間,亞馬遜和谷歌的股價(jià)雖然偏高,漲幅卻不如阿里巴巴和騰訊。
總結(jié)
觀察以上圖形,可以得出一下結(jié)果:
1、2017年谷歌和亞馬遜股價(jià)偏高,波動(dòng)較大,但其漲幅并不高;
2、2017年阿里巴巴和騰訊的股價(jià)平均值相對(duì)較小,股價(jià)波動(dòng)比較小,其漲幅卻很高,分別達(dá)到了94.62%和114.36%。
本篇文章就到這里了,希望能夠給你帶來(lái)幫助,也希望您能夠多多關(guān)注腳本之家的更多內(nèi)容!
相關(guān)文章
聊聊pytorch測(cè)試的時(shí)候?yàn)楹我由蟤odel.eval()
這篇文章主要介紹了聊聊pytorch測(cè)試的時(shí)候?yàn)楹我由蟤odel.eval()的操作,具有很好的參考價(jià)值,希望對(duì)大家有所幫助。如有錯(cuò)誤或未考慮完全的地方,望不吝賜教2021-05-05
PyTorch使用GPU加速計(jì)算的實(shí)現(xiàn)
PyTorch利用NVIDIA CUDA庫(kù)提供的底層接口來(lái)實(shí)現(xiàn)GPU加速計(jì)算,本文就來(lái)介紹一下PyTorch使用GPU加速計(jì)算的實(shí)現(xiàn),具有一定的參考價(jià)值,感興趣的可以了解一下2024-02-02
Tensorflow 自定義loss的情況下初始化部分變量方式
今天小編就為大家分享一篇Tensorflow 自定義loss的情況下初始化部分變量方式,具有很好的參考價(jià)值,希望對(duì)大家有所幫助。一起跟隨小編過(guò)來(lái)看看吧2020-01-01
Python 爬蟲批量爬取網(wǎng)頁(yè)圖片保存到本地的實(shí)現(xiàn)代碼
這篇文章主要介紹了Python 爬蟲批量爬取網(wǎng)頁(yè)圖片保存到本地,本文通過(guò)實(shí)例代碼給大家介紹的非常詳細(xì),對(duì)大家的學(xué)習(xí)或工作具有一定的參考借鑒價(jià)值,需要的朋友可以參考下2020-12-12
Python 實(shí)現(xiàn)Excel XLS和XLSX格式相互轉(zhuǎn)換問(wèn)題
本文介紹如何使用Python庫(kù)Spire.XLS for Python實(shí)現(xiàn)Excel文件的XLS和XLSX格式轉(zhuǎn)換,提供了詳細(xì)的安裝指南和轉(zhuǎn)換步驟,幫助用戶在不同版本的Excel文件格式之間靈活轉(zhuǎn)換,同時(shí)支持將Excel文件轉(zhuǎn)換為PDF、圖片、HTML等格式2024-10-10

