三行Python代碼提高數(shù)據(jù)處理腳本速度
Python是一門非常適合處理數(shù)據(jù)和自動化完成重復(fù)性工作的編程語言,我們在用數(shù)據(jù)訓(xùn)練機(jī)器學(xué)習(xí)模型之前,通常都需要對數(shù)據(jù)進(jìn)行預(yù)處理,而Python就非常適合完成這項(xiàng)工作,比如需要重新調(diào)整幾十萬張圖像的尺寸,用Python沒問題!你幾乎總是能找到一款可以輕松完成數(shù)據(jù)處理工作的Python庫。
然而,雖然Python易于學(xué)習(xí),使用方便,但它并非運(yùn)行速度最快的語言。默認(rèn)情況下,Python程序使用一個CPU以單個進(jìn)程運(yùn)行。不過如果你是在最近幾年配置的電腦,通常都是四核處理器,也就是有4個CPU。這就意味著在你苦苦等待Python腳本完成數(shù)據(jù)處理工作時,你的電腦其實(shí)有75%甚至更多的計算資源就在那閑著沒事干!
今天我(作者Adam Geitgey——譯者注)就教大家怎樣通過并行運(yùn)行Python函數(shù),充分利用你的電腦的全部處理能力。得益于Python的 concurrent.futures 模塊,我們只需3行代碼,就能將一個普通數(shù)據(jù)處理腳本變?yōu)槟懿⑿刑幚頂?shù)據(jù)的腳本,提速4倍。
普通Python處理數(shù)據(jù)方法
比方說,我們有一個全是圖像數(shù)據(jù)的文件夾,想用Python為每張圖像創(chuàng)建縮略圖。
下面是一個短暫的腳本,用Python的內(nèi)置glob函數(shù)獲取文件夾中所有JPEG圖像的列表,然后用Pillow圖像處理庫為每張圖像保存大小為128像素的縮略圖:
import glob
import os
from PIL import Image
def make_image_thumbnail(filename):
# 縮略圖會被命名為"<original_filename>_thumbnail.jpg"
base_filename, file_extension = os.path.splitext(filename)
thumbnail_filename = f"{base_filename}_thumbnail{file_extension}"
# 創(chuàng)建和保存縮略圖
image = Image.open(filename)
image.thumbnail(size=(128, 128))
image.save(thumbnail_filename, "JPEG")
return thumbnail_filename
# 循環(huán)文件夾中所有JPEG圖像,為每張圖像創(chuàng)建縮略圖
for image_file in glob.glob("*.jpg"):
thumbnail_file = make_image_thumbnail(image_file)
print(f"A thumbnail for {image_file} was saved as {thumbnail_file}")這段腳本沿用了一個簡單的模式,你會在數(shù)據(jù)處理腳本中經(jīng)常見到這種方法:
- 首先獲得你想處理的文件(或其它數(shù)據(jù))的列表
- 寫一個輔助函數(shù),能夠處理上述文件的單個數(shù)據(jù)
- 使用for循環(huán)調(diào)用輔助函數(shù),處理每一個單個數(shù)據(jù),一次一個。
咱們用一個包含1000張JPEG圖像的文件夾測試一下這段腳本,看看運(yùn)行完要花多長時間:
$ time python3 thumbnails_1.py A thumbnail for 1430028941_4db9dedd10.jpg was saved as 1430028941_4db9dedd10_thumbnail.jpg [... about 1000 more lines of output ...] real 0m8.956s user 0m7.086s sys 0m0.743s
運(yùn)行程序花了8.9秒,但是電腦的真實(shí)工作強(qiáng)度怎樣呢?
我們再運(yùn)行一遍程序,看看程序運(yùn)行時的活動監(jiān)視器情況:

電腦有75%的處理資源處于閑置狀態(tài)!這是什么情況?
這個問題的原因就是我的電腦有4個CPU,但Python只使用了一個。所以程序只是卯足了勁用其中一個CPU,另外3個卻無所事事。
因此我需要一種方法能將工作量分成4個我能并行處理的單獨(dú)部分。幸運(yùn)的是,Python中有個方法很容易能讓我們做到!
試試創(chuàng)建多進(jìn)程
下面是一種可以讓我們并行處理數(shù)據(jù)的方法:
- 將JPEG文件劃分為4小塊。
- 運(yùn)行Python解釋器的4個單獨(dú)實(shí)例。
- 讓每個Python實(shí)例處理這4塊數(shù)據(jù)中的一塊。
- 將這4部分的處理結(jié)果合并,獲得結(jié)果的最終列表。
4個Python拷貝程序在4個單獨(dú)的CPU上運(yùn)行,處理的工作量應(yīng)該能比一個CPU大約高出4倍,對吧?
最妙的是,Python已經(jīng)替我們做完了最麻煩的那部分工作。我們只需告訴它想運(yùn)行哪個函數(shù)以及使用多少實(shí)例就行了,剩下的工作它會完成。
整個過程我們只需要改動3行代碼。
首先,我們需要導(dǎo)入concurrent.futures庫,這個庫就內(nèi)置在Python中:
import concurrent.futures
接著,我們需要告訴Python啟動4個額外的Python實(shí)例。我們通過讓Python創(chuàng)建一個Process Pool來完成這一步:
with concurrent.futures.ProcessPoolExecutor() as executor:
默認(rèn)情況下,它會為你電腦上的每個CPU創(chuàng)建一個Python進(jìn)程,所以如果你有4個CPU,就會啟動4個Python進(jìn)程。
最后一步是讓創(chuàng)建的Process Pool用這4個進(jìn)程在數(shù)據(jù)列表上執(zhí)行我們的輔助函數(shù)。
完成這一步,我們要將已有的for循環(huán):
for image_file in glob.glob("*.jpg"):
thumbnail_file = make_image_thumbnail(image_file)替換為新的調(diào)用executor.map():
image_files = glob.glob("*.jpg")
for image_file, thumbnail_file in zip(image_files,executor.map(make_image_thumbnail, image_files)):該executor.map()函數(shù)調(diào)用時需要輸入輔助函數(shù)和待處理的數(shù)據(jù)列表。
這個函數(shù)能幫我完成所有麻煩的工作,包括將列表分為多個子列表、將子列表發(fā)送到每個子進(jìn)程、運(yùn)行子進(jìn)程以及合并結(jié)果等。干得漂亮!
這也能為我們返回每個函數(shù)調(diào)用的結(jié)果。
Executor.map()函數(shù)會按照和輸入數(shù)據(jù)相同的順序返回結(jié)果。所以我用了Python的zip()函數(shù)作為捷徑,一步獲取原始文件名和每一步中的匹配結(jié)果。
這里是經(jīng)過這三步改動后的程序代碼:
import glob
import os
from PIL import Image
import concurrent.futures
def make_image_thumbnail(filename):
# 縮略圖會被命名為 "<original_filename>_thumbnail.jpg"
base_filename, file_extension = os.path.splitext(filename)
thumbnail_filename = f"{base_filename}_thumbnail{file_extension}"
# 創(chuàng)建和保存縮略圖
image = Image.open(filename)
image.thumbnail(size=(128, 128))
image.save(thumbnail_filename, "JPEG")
return thumbnail_filename
# 創(chuàng)建Process Pool,默認(rèn)為電腦的每個CPU創(chuàng)建一個
with concurrent.futures.ProcessPoolExecutor() as executor:
# 獲取需要處理的文件列表
image_files = glob.glob("*.jpg")
# 處理文件列表,但通過Process Pool劃分工作,使用全部CPU!
for image_file, thumbnail_file in zip(image_files, executor.map(make_image_thumbnail, image_files)):
print(f"A thumbnail for {image_file} was saved as {thumbnail_file}")我們來運(yùn)行一下這段腳本,看看它是否以更快的速度完成數(shù)據(jù)處理:
$ time python3 thumbnails_2.py A thumbnail for 1430028941_4db9dedd10.jpg was saved as 1430028941_4db9dedd10_thumbnail.jpg [... about 1000 more lines of output ...] real 0m2.274s user 0m8.959s sys 0m0.951s
腳本在2.2秒就處理完了數(shù)據(jù)!比原來的版本提速4倍!之所以能更快的處理數(shù)據(jù),是因?yàn)槲覀兪褂昧?個CPU而不是1個。
但是如果你仔細(xì)看看,會發(fā)現(xiàn)“用戶”時間幾乎為9秒。那為何程序處理時間為2.2秒,但不知怎么搞得運(yùn)行時間還是9秒?這似乎不太可能?。?/p>
這是因?yàn)?ldquo;用戶”時間是所有CPU時間的總和,我們最終完成工作的CPU時間總和一樣,都是9秒,但我們使用4個CPU完成的,實(shí)際處理數(shù)據(jù)時間只有2.2秒!
注意:啟用更多Python進(jìn)程以及給子進(jìn)程分配數(shù)據(jù)都會占用時間,因此靠這個方法并不能保證總是能大幅提高速度。
這種方法總能幫我的數(shù)據(jù)處理腳本提速嗎?
如果你有一列數(shù)據(jù),并且每個數(shù)據(jù)都能單獨(dú)處理時,使用我們這里所說的Process Pools是一個提速的好方法。下面是一些適合使用并行處理的例子:
- 從一系列單獨(dú)的網(wǎng)頁服務(wù)器日志里抓取統(tǒng)計數(shù)據(jù)。
- 從一堆XML,CSV和JSON文件中解析數(shù)據(jù)。
- 對大量圖片數(shù)據(jù)做預(yù)處理,建立機(jī)器學(xué)習(xí)數(shù)據(jù)集。
但也要記住,Process Pools并不是萬能的。使用Process Pool需要在獨(dú)立的Python處理進(jìn)程之間來回傳遞數(shù)據(jù)。如果你要處理的數(shù)據(jù)不能在處理過程中被有效地傳遞,這種方法就行不通了。簡而言之,你處理的數(shù)據(jù)必須是Python知道怎么應(yīng)對的類型。
同時,也無法按照一個預(yù)想的順序處理數(shù)據(jù)。如果你需要前一步的處理結(jié)果來進(jìn)行下一步,這種方法也行不通。
那GIL的問題呢?
你可能知道Python有個叫全局解釋器鎖(Global Interpreter Lock)的東西,即GIL。這意味著即使你的程序是多線程的,每個線程也只能執(zhí)行一個Python指令。GIL確保任何時候都只有一個Python線程執(zhí)行。換句話說,多線程的Python代碼并不能真正地并行運(yùn)行,從而無法充分利用多核CPU。
但是Process Pool能解決這個問題!因?yàn)槲覀兪沁\(yùn)行單獨(dú)的Python實(shí)例,每個實(shí)例都有自己的GIL。這樣我們獲得是真正能并行處理的Python代碼!
不要害怕并行處理!
有了concurrent.futures庫,Python就能讓你簡簡單單地修改一下腳本后,立刻讓你電腦上所有CPU投入到工作中。
以上就是三行Python代碼提高數(shù)據(jù)處理腳本速度的詳細(xì)內(nèi)容,更多關(guān)于Python數(shù)據(jù)處理的資料請關(guān)注腳本之家其它相關(guān)文章!
相關(guān)文章
Python3實(shí)現(xiàn)的回文數(shù)判斷及羅馬數(shù)字轉(zhuǎn)整數(shù)算法示例
這篇文章主要介紹了Python3實(shí)現(xiàn)的回文數(shù)判斷及羅馬數(shù)字轉(zhuǎn)整數(shù)算法,涉及Python數(shù)值運(yùn)算、轉(zhuǎn)換等相關(guān)操作技巧,需要的朋友可以參考下2019-03-03
Spring實(shí)戰(zhàn)之使用util:命名空間簡化配置操作示例
這篇文章主要介紹了Spring實(shí)戰(zhàn)之使用util:命名空間簡化配置操作,結(jié)合實(shí)例形式分析了Spring使用util:命名空間簡化配置操作的具體步驟與相關(guān)操作注意事項(xiàng),需要的朋友可以參考下2019-12-12
如何使用 Poetry 進(jìn)行 Python 項(xiàng)目管理
本文介紹了如何安裝、卸載和管理Poetry,以及如何查看其版本和位置,此外,還詳細(xì)說明了如何使用Poetry安裝項(xiàng)目依賴,包括依賴解析、鎖定、虛擬環(huán)境管理等優(yōu)勢,感興趣的朋友一起看看吧2024-11-11
python實(shí)現(xiàn)ip地址查詢經(jīng)緯度定位詳解
這篇文章主要介紹了python實(shí)現(xiàn)ip地址查詢經(jīng)緯度定位詳解,文中通過示例代碼介紹的非常詳細(xì),對大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價值,需要的朋友可以參考下2019-08-08

