Python3實(shí)現(xiàn)自定義比較排序/運(yùn)算符
自定義比較排序/運(yùn)算符
Python3和Python2相比有挺多變化。
在Python2中可以直接寫一個(gè)cmp函數(shù)作為參數(shù)傳入sort來自定義排序,但是Python3取消了。
在這里總結(jié)一下Python3的自定義排序的兩種寫法,歡迎補(bǔ)充。
我們以二維空間中的點(diǎn)來作為待排序的數(shù)據(jù)結(jié)構(gòu),我們希望能先比較x后再比較y。
class Pos:
? ? def __init__(self, x = 0, y = 0):
? ? ? ? self.x = x
? ? ? ? self.y = y
?
? ? def __str__(self):
? ? ? ? return ('(%s, %s)' % (self.x, self.y))
?
? ? __repr__ = __str__1.cmp函數(shù)
第一種方法我們還是以重寫cmp或lambda表達(dá)式的形式,和Python2很類似
注意,此方法用sorted是不能成功排序的
只是要借助functools
import functools def cmp(a, b): ? ? return a.x-b.x if a.x != b.x else a.y-b.y ?# x y均按照從小到大的順序 ? if __name__ == '__main__': ? ? ? test_list = [Pos(5, 1), Pos(2,5), Pos(2, 4)] ? ? # test_list.sort(key=functools.cmp_to_key(lambda a,b: a.x-b.x if a.x != b.x else a.y-b.y)) ? ? test_list.sort(key=functools.cmp_to_key(cmp)) ? ? # sorted(test_list, key=functools.cmp_to_key(cmp)) ?# ? ?親測(cè)此方法不能成功排序 ? ? print(test_list) ?# 輸出結(jié)果 [(2, 4), (2, 5), (5, 1)]
2.重寫類方法
Python2中可以直接重寫__cmp__方法來實(shí)現(xiàn)比較,但是Python3中已經(jīng)取消了.
Python3中需要細(xì)分每一個(gè)比較運(yùn)算符.
__lt__: < __gt__: > __ge__: >= __eq__: == __le__: <=
實(shí)現(xiàn)如下
class Pos:
def __init__(self, x = 0, y = 0):
self.x = x
self.y = y
def __str__(self):
return ('(%s, %s)' % (self.x, self.y))
def __lt__(self, other):
print('lt: ' + str(self))
return self.x < other.x if self.x != other.x else self.y < other.y
def __gt__(self, other):
print('gt: ' + str(self))
return self.x > other.x if self.x != other.x else self.y > other.y
def __ge__(self, other):
print('ge: ' + str(self))
return self.x >= other.x if self.x != other.x else self.y >= other.y
def __eq__(self, other):
print('eq: ' + str(self))
return self.x == other.x and self.y == other.y
def __le__(self, other):
print('le: ' + str(self))
return self.x <= other.x if self.x != other.x else self.y <= other.y
__repr__ = __str__我們實(shí)踐一下
if __name__ == '__main__':
if Pos(5,1) <= Pos(2,4):
print('True!')
if Pos(5,1) == Pos(2,4):
print('True!')
if Pos(5,1) > Pos(2,4):
print('True!')
# 輸出
# le: (5, 1)
# eq: (5, 1)
# gt: (5, 1)
# True!最后我們回到排序
if __name__ == '__main__':
test_list = [Pos(5, 1), Pos(2,5), Pos(2, 4)]
test_list.sort()
print(test_list)
test_list.sort(reverse=True)
print(test_list)
# 輸出
# lt: (2, 5)
# lt: (2, 4)
# [(2, 4), (2, 5), (5, 1)]
# lt: (2, 5)
# lt: (2, 4)
# [(5, 1), (2, 5), (2, 4)]Python3實(shí)現(xiàn)各種排序方法
# coding=gbk
import random
from array import array
def swap(lyst,i,j):
temp = lyst[i]
lyst[i] = lyst[j]
lyst[j] = temp
#選擇排序,復(fù)雜度O(n^2)
def selectionSort(lyst):
i = 0
while i < len(lyst) - 1:
minIndex = i
j = i + 1
while j < len(lyst):
if lyst[j] < lyst[minIndex]:
minIndex = j
j += 1
if minIndex != i:
swap(lyst,minIndex,i)
i += 1
#冒泡排序,復(fù)雜的O(n^2)
def bubbleSort(lyst):
n = len(lyst)
while n > 1:
i = 1
while i < n:
if lyst[i] < lyst[i-1]:
swap(lyst,i,i-1)
i += 1
n -= 1
#冒泡排序優(yōu)化改進(jìn)最好情況
def bubbleSortWithTweak(lyst):
n = len(lyst)
while n > 1:
swapped = False
i = 1
while i < n:
if lyst[i] < lyst[i-1]:
swap(lyst,i,i-1)
swapped = True
i += 1
if not swapped: return
n -= 1
#插入排序,復(fù)雜的O(n^2)
def insertionSort(lyst):
i = 1
while i < len(lyst):
itemToInsert = lyst[i]
j = i - 1
while j >= 0:
if itemToInsert < lyst[j]:
lyst[j+1] = lyst[j]
j -= 1
else:
break
lyst[j+1] = itemToInsert
i += 1
#快速排序,最好情況,復(fù)雜的O(n*(log2 n)),最壞情況,復(fù)雜的O(n^2)
def quicksort(lyst):
quicksortHelper(lyst,0,len(lyst)-1)
def quicksortHelper(lyst,left,right):
if left < right:
pivotLocation = partition(lyst,left,right)
quicksortHelper(lyst,left,pivotLocation-1)
quicksortHelper(lyst,pivotLocation+1,right)
def partition(lyst,left,right):
middle = (left+right) // 2
pivot = lyst[middle]
lyst[middle] = lyst[right]
lyst[right] = pivot
boundary = left
for index in range(left,right):
if lyst[index] < pivot:
swap(lyst,index,boundary)
boundary += 1
swap(lyst,right,boundary)
return boundary
#合并排序
def mergeSort(lyst):
copyBuffer = [0]*(len(lyst))
mergeSortHelper(lyst,copyBuffer,0,len(lyst)-1)
def mergeSortHelper(lyst,copyBuffer,low,high):
if low < high:
middle = (low+high)//2
mergeSortHelper(lyst,copyBuffer,low,middle)
mergeSortHelper(lyst,copyBuffer,middle+1,high)
merge(lyst,copyBuffer,low,middle,high)
def merge(lyst,copyBuffer,low,middle,high):
i1 = low
i2 = middle + 1
for i in range(low,high+1):
if i1 > middle:
copyBuffer[i] = lyst[i2]
i2 += 1
elif i2 > high:
copyBuffer[i] = lyst[i1]
i1 += 1
elif lyst[i1] < lyst[i2]:
copyBuffer[i] = lyst[i1]
i1 += 1
else :
copyBuffer[i] = lyst[i2]
i2 += 1
for i in range(low,high+1):
lyst[i] = copyBuffer[i]
def main(size = 20,sort = mergeSort):
lyst = []
for count in range(size):
lyst.append(random.randint(1,size+1))
print(lyst)
sort(lyst)
print(lyst)
if __name__ == "__main__":
main()
以上為個(gè)人經(jīng)驗(yàn),希望能給大家一個(gè)參考,也希望大家多多支持腳本之家。
相關(guān)文章
Pytorch之nn.Upsample()和nn.ConvTranspose2d()用法詳解
nn.Upsample和nn.ConvTranspose2d是PyTorch中用于上采樣的兩種主要方法,nn.Upsample通過不同的插值方法(如nearest、bilinear)執(zhí)行上采樣,沒有可學(xué)習(xí)的參數(shù),適合快速簡(jiǎn)單的尺寸增加,而nn.ConvTranspose2d通過可學(xué)習(xí)的轉(zhuǎn)置卷積核進(jìn)行上采樣2024-10-10
Python的內(nèi)建模塊itertools的使用解析
這篇文章主要介紹了Python的內(nèi)建模塊itertools的使用解析,itertools是python的迭代器模塊,itertools提供的工具相當(dāng)高效且節(jié)省內(nèi)存,Python的內(nèi)建模塊itertools提供了非常有用的用于操作迭代對(duì)象的函數(shù),需要的朋友可以參考下2023-09-09
Python創(chuàng)建相同值數(shù)組/列表的兩種方法
眾所周知數(shù)組是一種用來在計(jì)算機(jī)中存儲(chǔ)連續(xù)的相同類型數(shù)值的數(shù)據(jù)結(jié)構(gòu),這篇文章主要給大家介紹了關(guān)于Python創(chuàng)建相同值數(shù)組/列表的兩種方法,文中通過示例代碼介紹的非常詳細(xì),需要的朋友可以參考下2022-12-12
python+matplotlib實(shí)現(xiàn)禮盒柱狀圖實(shí)例代碼
這篇文章主要介紹了python+matplotlib實(shí)現(xiàn)禮盒柱狀圖實(shí)例代碼,具有一定借鑒價(jià)值,需要的朋友可以參考下2018-01-01
PyTorch CUDA環(huán)境配置及安裝的步驟(圖文教程)
這篇文章主要介紹了PyTorch CUDA環(huán)境配置及安裝的步驟(圖文教程),文中通過示例代碼介紹的非常詳細(xì),對(duì)大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價(jià)值,需要的朋友們下面隨著小編來一起學(xué)習(xí)學(xué)習(xí)吧2021-04-04

