人工智能——K-Means聚類算法及Python實(shí)現(xiàn)
1 概述
1.1 無監(jiān)督學(xué)習(xí)

在一個(gè)典型的監(jiān)督學(xué)習(xí)中,我們有一個(gè)有標(biāo)簽的訓(xùn)練集,我們的目標(biāo)是找到能夠區(qū)分正
樣本和負(fù)樣本的決策邊界,在這里的監(jiān)督學(xué)習(xí)中,我們有一系列標(biāo)簽,我們需要據(jù)此擬合一
個(gè)假設(shè)函數(shù)。與此不同的是,在非監(jiān)督學(xué)習(xí)中,我們的數(shù)據(jù)沒有附帶任何標(biāo)簽,我們拿到的
數(shù)據(jù)就是這樣的:

在這里我們有一系列點(diǎn),卻沒有標(biāo)簽。因此,我們的訓(xùn)練集可以寫成只有:

我們沒有任何標(biāo)簽?。因此,圖上畫的這些點(diǎn)沒有標(biāo)簽信息。也就是說,在非監(jiān) 督學(xué)習(xí)中,我們需要將一系列無標(biāo)簽的訓(xùn)練數(shù)據(jù),輸入到一個(gè)算法中,然后我們告訴這個(gè)算法,快去為我們找找這個(gè)數(shù)據(jù)的內(nèi)在結(jié)構(gòu)給定數(shù)據(jù)。我們可能需要某種算法幫助我們尋找一 種結(jié)構(gòu)。圖上的數(shù)據(jù)看起來可以分成兩個(gè)分開的點(diǎn)集(稱為簇), 一個(gè)能夠找到我圈出的這 些點(diǎn)集的算法,就被稱為聚類算法 。
這將是我們介紹的第一個(gè)非監(jiān)督學(xué)習(xí)算法。當(dāng)然,此后我們還將提到其他類型的非監(jiān)督
學(xué)習(xí)算法,它們可以為我們找到其他類型的結(jié)構(gòu)或者其他的一些模式,而不只是簇。
我們將先介紹聚類算法。此后,我們將陸續(xù)介紹其他算法。那么聚類算法一般用來做什
么呢?

比如市場分割。也許你在數(shù)據(jù)庫中存儲(chǔ)了許多客戶的信息,而你希望將他們分成不同的客戶群,這樣你可以對(duì)不同類型的客戶分別銷售產(chǎn)品或者分別提供更適合的服務(wù)。社交網(wǎng)絡(luò)分析:事實(shí)上有許多研究人員正在研究這樣一些內(nèi)容,他們關(guān)注一群人,關(guān)注社交網(wǎng)絡(luò),例如 Facebook , Google+,或者是其他的一些信息,比如說:你經(jīng)常跟哪些人聯(lián)系,而這些人又經(jīng)常給哪些人發(fā)郵件,由此找到關(guān)系密切的人群。因此,這可能需要另一個(gè)聚類算法,你希望用它發(fā)現(xiàn)社交網(wǎng)絡(luò)中關(guān)系密切的朋友。 研究這個(gè)問題,希望使用聚類算法來更好的組織計(jì)算機(jī)集群,或者更好的管理數(shù)據(jù)中心。因?yàn)槿绻阒罃?shù)據(jù)中心中,那些計(jì)算機(jī)經(jīng)常協(xié)作工作。那么,你可以重新分配資源,重新布局網(wǎng)絡(luò)。由此優(yōu)化數(shù)據(jù)中心,優(yōu)化數(shù)據(jù)通信。
最后,我實(shí)際上還在研究如何利用聚類算法了解星系的形成。然后用這個(gè)知識(shí),了解一
些天文學(xué)上的細(xì)節(jié)問題。好的,這就是聚類算法。這將是我們介紹的第一個(gè)非監(jiān)督學(xué)習(xí)算法,接下來,我們將開始介紹一個(gè)具體的聚類算法。
1.2 聚類

1.3 K-Mean均值算法

2 K-Mean均值算法
2.1 引入
K- 均值 是最普及的聚類算法,算法接受一個(gè)未標(biāo)記的數(shù)據(jù)集,然后將數(shù)據(jù)聚類成不同的
組
步驟:
- 設(shè)定 K 個(gè)類別的中心的初值;
- 計(jì)算每個(gè)樣本到 K個(gè)中心的距離,按最近距離進(jìn)行分類;
- 以每個(gè)類別中樣本的均值,更新該類別的中心;
- 重復(fù)迭代以上步驟,直到達(dá)到終止條件(迭代次數(shù)、最小平方誤差、簇中心點(diǎn)變化率)。
下面是一個(gè)聚類示例:
K-means聚類算法:


K-均值算法的偽代碼如下:
Repeat {
for i = 1 to m
c(i) := index (form 1 to K) of cluster centroid closest to x(i)
for k = 1 to K
μk := average (mean) of points assigned to cluster k
}算法分為兩個(gè)步驟,第一個(gè) for 循環(huán)是賦值步驟,即:對(duì)于每一個(gè)樣例 i ,計(jì)算其應(yīng)該屬
于的類。第二個(gè) for 循環(huán)是聚類中心的移動(dòng),即:對(duì)于每一個(gè)類K ,重新計(jì)算該類的質(zhì)心。
from sklearn.cluster import KMeans ?# 導(dǎo)入 sklearn.cluster.KMeans 類
import numpy as np
?
X = np.array([[1,2], [1,4], [1,0], [10,2], [10,4], [10,0]])
kmCluster = KMeans(n_clusters=2).fit(X) ?# 建立模型并進(jìn)行聚類,設(shè)定 K=2
print("聚類中心坐標(biāo):",kmCluster.cluster_centers_) ?# 返回每個(gè)聚類中心的坐標(biāo)
print("分類結(jié)果:",kmCluster.labels_) ?# 返回樣本集的分類結(jié)果
print("顯示預(yù)測判斷:",kmCluster.predict([[0, 0], [12, 3]])) ?# 根據(jù)模型聚類結(jié)果進(jìn)行預(yù)測判斷聚類中心坐標(biāo): [[10. ?2.] ?[ 1. ?2.]] 分類結(jié)果: [1 1 1 0 0 0] 顯示預(yù)測判斷: [1 0] ? Process finished with exit code 0
2.2 針對(duì)大樣本集的改進(jìn)算法:Mini Batch K-Means
對(duì)于樣本集巨大的問題,例如樣本量大于 10萬、特征變量大于100,K-Means算法耗費(fèi)的速度和內(nèi)存很大。SKlearn 提供了針對(duì)大樣本集的改進(jìn)算法Mini Batch K-Means,并不使用全部樣本數(shù)據(jù),而是每次抽樣選取小樣本集進(jìn)行 K-Means聚類,進(jìn)行循環(huán)迭代。Mini Batch K-Means 雖然性能略有降低,但極大的提高了運(yùn)行速度和內(nèi)存占用?!?/p>
from sklearn.cluster import MiniBatchKMeans # 導(dǎo)入 .MiniBatchKMeans 類
import numpy as np
X = np.array([[1,2], [1,4], [1,0], [4,2], [4,0], [4,4],
? ? ? ? ? ? ? [4,5], [0,1], [2,2],[3,2], [5,5], [1,-1]])
# fit on the whole data
mbkmCluster = MiniBatchKMeans(n_clusters=3,batch_size=6,max_iter=10).fit(X)
print("聚類中心的坐標(biāo):",mbkmCluster.cluster_centers_) # 返回每個(gè)聚類中心的坐標(biāo)
print("樣本集的分類結(jié)果:",mbkmCluster.labels_) ?# 返回樣本集的分類結(jié)果
print("顯示判斷結(jié)果:樣本屬于哪個(gè)類別:",mbkmCluster.predict([[0,0], [4,5]])) ?# 根據(jù)模型聚類結(jié)果進(jìn)行預(yù)測判斷聚類中心的坐標(biāo): [[ 2.55932203 ?1.76271186] ?[ 0.75862069 -0.20689655] ?[ 4.20588235 ?4.5 ? ? ? ]] 樣本集的分類結(jié)果: [0 0 1 0 0 2 2 1 0 0 2 1] 顯示判斷結(jié)果:樣本屬于哪個(gè)類別: [1 2] ? Process finished with exit code 0
2.3 圖像
from sklearn.cluster import kmeans_plusplus
from sklearn.datasets import make_blobs
import matplotlib.pyplot as plt
?
# Generate sample data
n_samples = 4000
n_components = 4
?
X, y_true = make_blobs(
? ? n_samples=n_samples, centers=n_components, cluster_std=0.60, random_state=0
)
X = X[:, ::-1]
?
# Calculate seeds from kmeans++
centers_init, indices = kmeans_plusplus(X, n_clusters=4, random_state=0)
?
# Plot init seeds along side sample data
plt.figure(1)
colors = ["#4EACC5", "#FF9C34", "#4E9A06", "m"]
?
for k, col in enumerate(colors):
? ? cluster_data = y_true == k
? ? plt.scatter(X[cluster_data, 0], X[cluster_data, 1], c=col, marker=".", s=10)
?
plt.scatter(centers_init[:, 0], centers_init[:, 1], c="b", s=50)
plt.title("K-Means++ Initialization")
plt.xticks([])
plt.yticks([])
plt.show()
3 案例1
3.1 代碼
# ?-*- coding: utf-8 -*-
import numpy as np
import pandas as pd
from sklearn.cluster import KMeans, MiniBatchKMeans
?
def main():
? ? # 讀取數(shù)據(jù)文件
? ? file = pd.read_excel('K-Means.xlsx', header=0) ?# 首行為標(biāo)題行
? ? file = file.dropna() ?# 刪除含有缺失值的數(shù)據(jù)
? ? # print(file.dtypes) ?# 查看 df 各列的數(shù)據(jù)類型
? ? # print(file.shape) ?# 查看 df 的行數(shù)和列數(shù)
? ? print(file.head())
?
? ? # 數(shù)據(jù)準(zhǔn)備
? ? z_scaler = lambda x:(x-np.mean(x))/np.std(x) ?# 定義數(shù)據(jù)標(biāo)準(zhǔn)化函數(shù)
? ? dfScaler = file[['D1','D2','D3','D4','D5','D6','D7','D8','D9','D10']].apply(z_scaler) ?# 數(shù)據(jù)歸一化
? ? dfData = pd.concat([file[['地區(qū)']], dfScaler], axis=1) ?# 列級(jí)別合并
? ? df = dfData.loc[:,['D1','D2','D3','D4','D5','D6','D7','D8','D9','D10']] ?# 基于全部 10個(gè)特征聚類分析
? ? # df = dfData.loc[:,['D1','D2','D7','D8','D9','D10']] ?# 降維后選取 6個(gè)特征聚類分析
? ? X = np.array(df) ?# 準(zhǔn)備 sklearn.cluster.KMeans 模型數(shù)據(jù)
? ? print("Shape of cluster data:", X.shape)
?
? ? # KMeans 聚類分析(sklearn.cluster.KMeans)
? ? nCluster = 4
? ? kmCluster = KMeans(n_clusters=nCluster).fit(X) ?# 建立模型并進(jìn)行聚類,設(shè)定 K=4
? ? print("Cluster centers:\n", kmCluster.cluster_centers_) ?# 返回每個(gè)聚類中心的坐標(biāo)
? ? print("Cluster results:\n", kmCluster.labels_) ?# 返回樣本集的分類結(jié)果
?
? ? # 整理聚類結(jié)果(太棒啦!)
? ? listName = dfData['地區(qū)'].tolist() ?# 將 dfData 的首列 '地區(qū)' 轉(zhuǎn)換為 list
? ? dictCluster = dict(zip(listName,kmCluster.labels_)) ?# 將 listName 與聚類結(jié)果關(guān)聯(lián),組成字典
? ? listCluster = [[] for k in range(nCluster)]
? ? for v in range(0, len(dictCluster)):
? ? ? ? k = list(dictCluster.values())[v] ?# 第v個(gè)城市的分類是 k
? ? ? ? listCluster[k].append(list(dictCluster.keys())[v]) ?# 將第v個(gè)城市添加到 第k類
? ? print("\n聚類分析結(jié)果(分為{}類):".format(nCluster)) ?# 返回樣本集的分類結(jié)果
? ? for k in range(nCluster):
? ? ? ? print("第 {} 類:{}".format(k, listCluster[k])) ?# 顯示第 k 類的結(jié)果
?
? ? return
?
if __name__ == '__main__':
? ? main()3.2 結(jié)果
地區(qū) D1 D2 D3 D4 D5 D6 D7 D8 D9 D10
0 北京 5.96 310 461 1557 931 319 44.36 2615 2.20 13631
1 上海 3.39 234 308 1035 498 161 35.02 3052 0.90 12665
2 天津 2.35 157 229 713 295 109 38.40 3031 0.86 9385
3 陜西 1.35 81 111 364 150 58 30.45 2699 1.22 7881
4 遼寧 1.50 88 128 421 144 58 34.30 2808 0.54 7733
Shape of cluster data: (30, 10)
Cluster centers:
[[-3.04626787e-01 -2.89307971e-01 -2.90845727e-01 -2.88480032e-01
-2.85445404e-01 -2.85283077e-01 -6.22770669e-02 1.12938023e-03
-2.71308432e-01 -3.03408599e-01]
[ 4.44318512e+00 3.97251590e+00 4.16079449e+00 4.20994153e+00
4.61768098e+00 4.65296699e+00 2.45321197e+00 4.02147595e-01
4.22779099e+00 2.44672575e+00]
[ 1.52987871e+00 2.10479182e+00 1.97836141e+00 1.92037518e+00
1.54974999e+00 1.50344182e+00 1.13526879e+00 1.13595799e+00
8.39397483e-01 1.38149832e+00]
[ 4.17353928e-01 -6.60092295e-01 -5.55528420e-01 -5.50211065e-01
-2.95600461e-01 -2.42490616e-01 -3.10454580e+00 -2.70342746e+00
1.14743326e+00 2.67890118e+00]]
Cluster results:
[1 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0]
聚類分析結(jié)果(分為4類):
第 0 類:['陜西', '遼寧', '吉林', '黑龍江', '湖北', '江蘇', '廣東', '四川', '山東', '甘肅', '湖南', '浙江', '新疆', '福建', '山西', '河北', '安徽', '云南', '江西', '海南', '內(nèi)蒙古', '河南', '廣西', '寧夏', '貴州', '青海']
第 1 類:['北京']
第 2 類:['上海', '天津']
第 3 類:['西藏']
Process finished with exit code 0
4 案例2
4.1 案例——數(shù)據(jù)
(1)數(shù)據(jù)介紹:
現(xiàn)有1999年全國31個(gè)省份城鎮(zhèn)居民家庭平均每人全年消費(fèi)性支出的八個(gè)主要變量數(shù)據(jù),這八個(gè)變量分別是:食品、衣著、家庭設(shè)備用品及服務(wù)、醫(yī)療保健、交通和通訊、娛樂教育文化服務(wù)、居住以及雜項(xiàng)商品和服務(wù)。利用已有數(shù)據(jù),對(duì)31個(gè)省份進(jìn)行聚類。
(2)實(shí)驗(yàn)?zāi)康模?/strong>
通過聚類,了解 1999 年各個(gè)省份的消費(fèi)水平在國內(nèi)的情況
1999年全國31個(gè)省份城鎮(zhèn)居民家庭平均每人全年消費(fèi)性支出數(shù)據(jù):

4.2 代碼
#*========================1. 建立工程,導(dǎo)入sklearn相關(guān)包======================================**
?
import numpy as np
from sklearn.cluster import KMeans
?
#*======================2. 加載數(shù)據(jù),創(chuàng)建K-means算法實(shí)例,并進(jìn)行訓(xùn)練,獲得標(biāo)簽====================**
?
def loadData(filePath):
? ? fr = open(filePath, 'r+') ? ? ? ? ? ?#r+:讀寫打開一個(gè)文本文件
? ? lines = fr.readlines() ? ? ? ? ? #.readlines() 一次讀取整個(gè)文件(類似于 .read() ) .readline() 每次只讀.readlines() 慢得多。
? ? retData = [] ? ? ? ? ? ? ? ? ? ? #retData:用來存儲(chǔ)城市的各項(xiàng)消費(fèi)信息
? ? retCityName = [] ? ? ? ? ? ? ? ? #retCityName:用來存儲(chǔ)城市名稱
? ? for line in lines:
? ? ? ? items = line.strip().split(",")
? ? ? ? retCityName.append(items[0])
? ? ? ? retData.append([float(items[i]) for i in range(1, len(items))])
? ? return retData, retCityName ? ? ?#返回值:返回城市名稱,以及該城市的各項(xiàng)消費(fèi)信息
?
def main():
? ? data, cityName = loadData('city.txt') ? ?#1.利用loadData方法讀取數(shù)據(jù)
? ? km = KMeans(n_clusters=4) ? ? ? ? ? ? ? ?#2.創(chuàng)建實(shí)例
? ? label = km.fit_predict(data) ? ? ? ? ? ? #3.調(diào)用Kmeans()fit_predict()方法進(jìn)行計(jì)算
? ? expenses = np.sum(km.cluster_centers_, axis=1)
? ? # print(expenses)
? ? CityCluster = [[], [], [], []] ? ? ? ? ?#將城市按label分成設(shè)定的簇
? ? for i in range(len(cityName)):
? ? ? ? CityCluster[label[i]].append(cityName[i]) ? #將每個(gè)簇的城市輸出
? ? for i in range(len(CityCluster)): ? ? ? ? ? ? ?#將每個(gè)簇的平均花費(fèi)輸出
? ? ? ? print("Expenses:%.2f" % expenses[i])
? ? ? ? print(CityCluster[i])
?
if __name__ == '__main__':
? ? main()
?
#*=============3. 輸出標(biāo)簽,查看結(jié)果========================================**
?
#將城市按照消費(fèi)水平n_clusters類,消費(fèi)水平相近的城市聚集在一類中
#expense:聚類中心點(diǎn)的數(shù)值加和,也就是平均消費(fèi)水平
?
?
4.3 結(jié)果

從結(jié)果可以看出消費(fèi)水平相近的省市聚集在了一類,例如消費(fèi)最高的“北京”“上海”“廣東”
聚集在了消費(fèi)最高的類別。聚4類時(shí),結(jié)果可以比較明顯的看出消費(fèi)層級(jí)。
4.4 拓展&&改進(jìn)
計(jì)算兩條數(shù)據(jù)相似性時(shí),Sklearn 的K-Means默認(rèn)用的是歐式距離。雖然還有余弦相似度,馬氏距離等多種方法,但沒有設(shè)定計(jì)算距離方法的參數(shù)。

(1)如果想要自定義計(jì)算距離的方式時(shí),可以更改此處源碼。
(2)建議使用 scipy.spatial.distance.cdist 方法。
使用形式:scipy.spatial.distance.cdist(A, B, metric=‘cosine’):

重要參數(shù):
• A:A向量
• B:B向量
• metric: 計(jì)算A和B距離的方法,更改此參
數(shù)可以更改調(diào)用的計(jì)算距離的方法
到此這篇關(guān)于人工智能——K-Means聚類算法及Python實(shí)現(xiàn)的文章就介紹到這了,更多相關(guān) K-Means聚類算法及Python實(shí)現(xiàn)內(nèi)容請(qǐng)搜索腳本之家以前的文章或繼續(xù)瀏覽下面的相關(guān)文章希望大家以后多多支持腳本之家!
相關(guān)文章
python實(shí)現(xiàn)異步回調(diào)機(jī)制代碼分享
本文介紹了python實(shí)現(xiàn)異步回調(diào)機(jī)制的功能,大家參考使用吧2014-01-01
使用pyhon繪圖比較兩個(gè)手機(jī)屏幕大小(實(shí)例代碼)
這篇文章主要介紹了使用pyhon繪圖比較兩個(gè)手機(jī)屏幕大小,本文通過實(shí)例代碼給大家介紹的非常詳細(xì),具有一定的參考借鑒價(jià)值,需要的朋友可以參考下2020-01-01
Python?ChineseCalendar包主要類和方法詳解
ChineseCalendar?是一個(gè)?Python?包,用于獲取中國傳統(tǒng)日歷信息。這個(gè)包提供了中國農(nóng)歷、二十四節(jié)氣、傳統(tǒng)節(jié)日、黃歷等信息,這篇文章主要介紹了Python?ChineseCalendar包簡介,需要的朋友可以參考下2023-03-03
淺談Python使用Bottle來提供一個(gè)簡單的web服務(wù)
這篇文章主要介紹了淺談Python使用Bottle來提供一個(gè)簡單的web服務(wù),具有一定借鑒價(jià)值,需要的朋友可以參考下2017-12-12
pandas創(chuàng)建DataFrame的方式小結(jié)
今天給大家整理了pandas創(chuàng)建DataFrame的方式小結(jié),現(xiàn)在我們就來看看這三種生成Dataframe的方式,每種方式通過實(shí)例代碼給大家介紹的非常詳細(xì),需要的朋友參考下吧2021-09-09

