基于Python實(shí)現(xiàn)自動(dòng)掃雷詳解
用Python+OpenCV實(shí)現(xiàn)了自動(dòng)掃雷,突破世界記錄,我們先來(lái)看一下效果吧。

中級(jí) - 0.74秒 3BV/S=60.81
相信許多人很早就知道有掃雷這么一款經(jīng)典的游(顯卡測(cè)試)戲(軟件),更是有不少人曾聽(tīng)說(shuō)過(guò)中國(guó)雷圣,也是中國(guó)掃雷第一、世界綜合排名第二的郭蔚嘉的頂頂大名。掃雷作為一款在Windows9x時(shí)代就已經(jīng)誕生的經(jīng)典游戲,從過(guò)去到現(xiàn)在依然都有著它獨(dú)特的魅力:快節(jié)奏高精準(zhǔn)的鼠標(biāo)操作要求、快速的反應(yīng)能力、刷新紀(jì)錄的快感,這些都是掃雷給雷友們帶來(lái)的、只屬于掃雷的獨(dú)一無(wú)二的興奮點(diǎn)。
準(zhǔn)備
準(zhǔn)備動(dòng)手制作一套掃雷自動(dòng)化軟件之前,你需要準(zhǔn)備如下一些工具/軟件/環(huán)境
- 開(kāi)發(fā)環(huán)境
- Python3 環(huán)境 - 推薦3.6或者以上 [更加推薦Anaconda3,以下很多依賴庫(kù)無(wú)需安裝]
- numpy依賴庫(kù) [如有Anaconda則無(wú)需安裝]
- PIL依賴庫(kù) [如有Anaconda則無(wú)需安裝]
- opencv-python
- win32gui、win32api依賴庫(kù)
- 支持Python的IDE [可選,如果你能忍受用文本編輯器寫(xiě)程序也可以]
- 掃雷軟件
· Minesweeper Arbiter(必須使用MS-Arbiter來(lái)進(jìn)行掃雷?。?/p>
好啦,那么我們的準(zhǔn)備工作已經(jīng)全部完成了!讓我們開(kāi)始吧~
實(shí)現(xiàn)思路
在去做一件事情之前最重要的是什么? 是將要做的這件事情在心中搭建一個(gè)步驟框架。 只有這樣,才能保證在去做這件事的過(guò)程中,盡可能的做到深思熟慮,使得最終有個(gè)好的結(jié)果。 我們寫(xiě)程序也要盡可能做到在正式開(kāi)始開(kāi)發(fā)之前,在心中有個(gè)大致的思路。
對(duì)于本項(xiàng)目而言,大致的開(kāi)發(fā)過(guò)程是這樣的:
- 完成窗體內(nèi)容截取部分
- 完成雷塊分割部分
- 完成雷塊類型識(shí)別部分
- 完成掃雷算法
好啦,既然我們有了個(gè)思路,那就擼起袖子大力干!
窗體截取
其實(shí)對(duì)于本項(xiàng)目而言,窗體截取是一個(gè)邏輯上簡(jiǎn)單,實(shí)現(xiàn)起來(lái)卻相當(dāng)麻煩的部分,而且還是必不可少的部分。 我們通過(guò)Spy++得到了以下兩點(diǎn)信息:
class_name = "TMain" title_name = "Minesweeper Arbiter "
- ms_arbiter.exe的主窗體類別為"TMain"
- ms_arbiter.exe的主窗體名稱為"Minesweeper Arbiter "
注意到了么?主窗體的名稱后面有個(gè)空格。正是這個(gè)空格讓筆者困擾了一會(huì)兒,只有加上這個(gè)空格,win32gui才能夠正常的獲取到窗體的句柄。
本項(xiàng)目采用了win32gui來(lái)獲取窗體的位置信息,具體代碼如下:
hwnd = win32gui.FindWindow(class_name, title_name) if hwnd: left, top, right, bottom = win32gui.GetWindowRect(hwnd)
通過(guò)以上代碼,我們得到了窗體相對(duì)于整塊屏幕的位置。之后我們需要通過(guò)PIL來(lái)進(jìn)行掃雷界面的棋盤(pán)截取。
我們需要先導(dǎo)入PIL庫(kù)
from PIL import ImageGrab
然后進(jìn)行具體的操作。
left += 15 top += 101 right -= 15 bottom -= 43 rect = (left, top, right, bottom) img = ImageGrab.grab().crop(rect)
聰明的你肯定一眼就發(fā)現(xiàn)了那些奇奇怪怪的Magic Numbers,沒(méi)錯(cuò),這的確是Magic Numbers,是我們通過(guò)一點(diǎn)點(diǎn)細(xì)微調(diào)節(jié)得到的整個(gè)棋盤(pán)相對(duì)于窗體的位置。
注意:這些數(shù)據(jù)僅在Windows10下測(cè)試通過(guò),如果在別的Windows系統(tǒng)下,不保證相對(duì)位置的正確性,因?yàn)槔习姹镜南到y(tǒng)可能有不同寬度的窗體邊框。

橙色的區(qū)域是我們所需要的
好啦,棋盤(pán)的圖像我們有了,下一步就是對(duì)各個(gè)雷塊進(jìn)行圖像分割了~
雷塊分割
在進(jìn)行雷塊分割之前,我們事先需要了解雷塊的尺寸以及它的邊框大小。經(jīng)過(guò)筆者的測(cè)量,在ms_arbiter下,每一個(gè)雷塊的尺寸為16px*16px。
知道了雷塊的尺寸,我們就可以進(jìn)行每一個(gè)雷塊的裁剪了。首先我們需要知道在橫和豎兩個(gè)方向上雷塊的數(shù)量。
block_width, block_height = 16, 16 blocks_x = int((right - left) / block_width) blocks_y = int((bottom - top) / block_height)
之后,我們建立一個(gè)二維數(shù)組用于存儲(chǔ)每一個(gè)雷塊的圖像,并且進(jìn)行圖像分割,保存在之前建立的數(shù)組中。
def crop_block(hole_img, x, y):
x1, y1 = x * block_width, y * block_height
x2, y2 = x1 + block_width, y1 + block_height
return hole_img.crop((x1, y1, x2, y2))
blocks_img = [[0 for i in range(blocks_y)] for i in range(blocks_x)]
for y in range(blocks_y):
for x in range(blocks_x):
blocks_img[x][y] = crop_block(img, x, y)
將整個(gè)圖像獲取、分割的部分封裝成一個(gè)庫(kù),隨時(shí)調(diào)用就OK啦~在筆者的實(shí)現(xiàn)中,我們將這一部分封裝成了imageProcess.py,其中函數(shù)get_frame()用于完成上述的圖像獲取、分割過(guò)程。
雷塊識(shí)別
這一部分可能是整 個(gè)項(xiàng)目里除了掃雷算法本身之外最重要的部分了。 筆者在進(jìn)行雷塊檢測(cè)的時(shí)候采用了比較簡(jiǎn)單的特征,高效并且可以滿足要求。
def analyze_block(self, block, location):
block = imageProcess.pil_to_cv(block)
block_color = block[8, 8]
x, y = location[0], location[1]
# -1:Not opened
# -2:Opened but blank
# -3:Un initialized
# Opened
if self.equal(block_color, self.rgb_to_bgr((192, 192, 192))):
if not self.equal(block[8, 1], self.rgb_to_bgr((255, 255, 255))):
self.blocks_num[x][y] = -2
self.is_started = True
else:
self.blocks_num[x][y] = -1
elif self.equal(block_color, self.rgb_to_bgr((0, 0, 255))):
self.blocks_num[x][y] = 1
elif self.equal(block_color, self.rgb_to_bgr((0, 128, 0))):
self.blocks_num[x][y] = 2
elif self.equal(block_color, self.rgb_to_bgr((255, 0, 0))):
self.blocks_num[x][y] = 3
elif self.equal(block_color, self.rgb_to_bgr((0, 0, 128))):
self.blocks_num[x][y] = 4
elif self.equal(block_color, self.rgb_to_bgr((128, 0, 0))):
self.blocks_num[x][y] = 5
elif self.equal(block_color, self.rgb_to_bgr((0, 128, 128))):
self.blocks_num[x][y] = 6
elif self.equal(block_color, self.rgb_to_bgr((0, 0, 0))):
if self.equal(block[6, 6], self.rgb_to_bgr((255, 255, 255))):
# Is mine
self.blocks_num[x][y] = 9
elif self.equal(block[5, 8], self.rgb_to_bgr((255, 0, 0))):
# Is flag
self.blocks_num[x][y] = 0
else:
self.blocks_num[x][y] = 7
elif self.equal(block_color, self.rgb_to_bgr((128, 128, 128))):
self.blocks_num[x][y] = 8
else:
self.blocks_num[x][y] = -3
self.is_mine_form = False
if self.blocks_num[x][y] == -3 or not self.blocks_num[x][y] == -1:
self.is_new_start = False
可以看到,我們采用了讀取每個(gè)雷塊的中心點(diǎn)像素的方式來(lái)判斷雷塊的類別,并且針對(duì)插旗、未點(diǎn)開(kāi)、已點(diǎn)開(kāi)但是空白等情況進(jìn)行了進(jìn)一步判斷。具體色值是筆者直接取色得到的,并且屏幕截圖的色彩也沒(méi)有經(jīng)過(guò)壓縮,所以通過(guò)中心像素結(jié)合其他特征點(diǎn)來(lái)判斷類別已經(jīng)足夠了,并且做到了高效率。
在本項(xiàng)目中,我們實(shí)現(xiàn)的時(shí)候采用了如下標(biāo)注方式:
- 1-8:表示數(shù)字1到8
- 9:表示是地雷
- 0:表示插旗
- -1:表示未打開(kāi)
- -2:表示打開(kāi)但是空白
- -3:表示不是掃雷游戲中的任何方塊類型
通過(guò)這種簡(jiǎn)單快速又有效的方式,我們成功實(shí)現(xiàn)了高效率的圖像識(shí)別。
掃雷算法實(shí)現(xiàn)
這可能是本篇文章最激動(dòng)人心的部分了。 在這里我們需要先說(shuō)明一下具體的掃雷算法思路:
- 遍歷每一個(gè)已經(jīng)有數(shù)字的雷塊,判斷在它周?chē)木艑m格內(nèi)未被打開(kāi)的雷塊數(shù)量是否和本身數(shù)字相同,如果相同則表明周?chē)艑m格內(nèi)全部都是地雷,進(jìn)行標(biāo)記。
- 再次遍歷每一個(gè)有數(shù)字的雷塊,取九宮格范圍內(nèi)所有未被打開(kāi)的雷塊,去除已經(jīng)被上一次遍歷標(biāo)記為地雷的雷塊,記錄并且點(diǎn)開(kāi)。
- 如果以上方式無(wú)法繼續(xù)進(jìn)行,那么說(shuō)明遇到了死局,選擇在當(dāng)前所有未打開(kāi)的雷塊中隨機(jī)點(diǎn)擊。(當(dāng)然這個(gè)方法不是最優(yōu)的,有更加優(yōu)秀的解決方案,但是實(shí)現(xiàn)相對(duì)麻煩)
基本的掃雷流程就是這樣,那么讓我們來(lái)親手實(shí)現(xiàn)它吧~
首先我們需要一個(gè)能夠找出一個(gè)雷塊的九宮格范圍的所有方塊位置的方法。因?yàn)閽呃子螒虻奶厥庑?,在棋盤(pán)的四邊是沒(méi)有九宮格的邊緣部分的,所以我們需要篩選來(lái)排除掉可能超過(guò)邊界的訪問(wèn)。
def generate_kernel(k, k_width, k_height, block_location):
ls = []
loc_x, loc_y = block_location[0], block_location[1]
for now_y in range(k_height):
for now_x in range(k_width):
if k[now_y][now_x]:
rel_x, rel_y = now_x - 1, now_y - 1
ls.append((loc_y + rel_y, loc_x + rel_x))
return ls
kernel_width, kernel_height = 3, 3
# Kernel mode:[Row][Col]
kernel = [[1, 1, 1], [1, 1, 1], [1, 1, 1]]
# Left border
if x == 0:
for i in range(kernel_height):
kernel[i][0] = 0
# Right border
if x == self.blocks_x - 1:
for i in range(kernel_height):
kernel[i][kernel_width - 1] = 0
# Top border
if y == 0:
for i in range(kernel_width):
kernel[0][i] = 0
# Bottom border
if y == self.blocks_y - 1:
for i in range(kernel_width):
kernel[kernel_height - 1][i] = 0
# Generate the search map
to_visit = generate_kernel(kernel, kernel_width, kernel_height, location)
我們?cè)谶@一部分通過(guò)檢測(cè)當(dāng)前雷塊是否在棋盤(pán)的各個(gè)邊緣來(lái)進(jìn)行核的刪除(在核中,1為保留,0為舍棄),之后通過(guò)generate_kernel函數(shù)來(lái)進(jìn)行最終坐標(biāo)的生成。
def count_unopen_blocks(blocks):
count = 0
for single_block in blocks:
if self.blocks_num[single_block[1]][single_block[0]] == -1:
count += 1
return count
def mark_as_mine(blocks):
for single_block in blocks:
if self.blocks_num[single_block[1]][single_block[0]] == -1:
self.blocks_is_mine[single_block[1]][single_block[0]] = 1
unopen_blocks = count_unopen_blocks(to_visit)
if unopen_blocks == self.blocks_num[x][y]:
mark_as_mine(to_visit)
在完成核的生成之后,我們有了一個(gè)需要去檢測(cè)的雷塊“地址簿”:to_visit。之后,我們通過(guò)count_unopen_blocks函數(shù)來(lái)統(tǒng)計(jì)周?chē)艑m格范圍的未打開(kāi)數(shù)量,并且和當(dāng)前雷塊的數(shù)字進(jìn)行比對(duì),如果相等則將所有九宮格內(nèi)雷塊通過(guò)mark_as_mine函數(shù)來(lái)標(biāo)注為地雷。
def mark_to_click_block(blocks):
for single_block in blocks:
# Not Mine
if not self.blocks_is_mine[single_block[1]][single_block[0]] == 1:
# Click-able
if self.blocks_num[single_block[1]][single_block[0]] == -1:
# Source Syntax: [y][x] - Converted
if not (single_block[1], single_block[0]) in self.next_steps:
self.next_steps.append((single_block[1], single_block[0]))
def count_mines(blocks):
count = 0
for single_block in blocks:
if self.blocks_is_mine[single_block[1]][single_block[0]] == 1:
count += 1
return count
mines_count = count_mines(to_visit)
if mines_count == block:
mark_to_click_block(to_visit)
掃雷流程中的第二步我們也采用了和第一步相近的方法來(lái)實(shí)現(xiàn)。先用和第一步完全一樣的方法來(lái)生成需要訪問(wèn)的雷塊的核,之后生成具體的雷塊位置,通過(guò)count_mines函數(shù)來(lái)獲取九宮格范圍內(nèi)所有雷塊的數(shù)量,并且判斷當(dāng)前九宮格內(nèi)所有雷塊是否已經(jīng)被檢測(cè)出來(lái)。
如果是,則通過(guò)mark_to_click_block函數(shù)來(lái)排除九宮格內(nèi)已經(jīng)被標(biāo)記為地雷的雷塊,并且將剩余的安全雷塊加入next_steps數(shù)組內(nèi)。
# Analyze the number of blocks
self.iterate_blocks_image(BoomMine.analyze_block)
# Mark all mines
self.iterate_blocks_number(BoomMine.detect_mine)
# Calculate where to click
self.iterate_blocks_number(BoomMine.detect_to_click_block)
if self.is_in_form(mouseOperation.get_mouse_point()):
for to_click in self.next_steps:
on_screen_location = self.rel_loc_to_real(to_click)
mouseOperation.mouse_move(on_screen_location[0], on_screen_location[1])
mouseOperation.mouse_click()
在最終的實(shí)現(xiàn)內(nèi),筆者將幾個(gè)過(guò)程都封裝成為了函數(shù),并且可以通過(guò)iterate_blocks_number方法來(lái)對(duì)所有雷塊都使用傳入的函數(shù)來(lái)進(jìn)行處理,這有點(diǎn)類似Python中Filter的作用。
之后筆者做的工作就是判斷當(dāng)前鼠標(biāo)位置是否在棋盤(pán)之內(nèi),如果是,就會(huì)自動(dòng)開(kāi)始識(shí)別并且點(diǎn)擊。具體的點(diǎn)擊部分,筆者采用了作者為"wp"的一份代碼(從互聯(lián)網(wǎng)搜集而得),里面實(shí)現(xiàn)了基于win32api的窗體消息發(fā)送工作,進(jìn)而完成了鼠標(biāo)移動(dòng)和點(diǎn)擊的操作。具體實(shí)現(xiàn)封裝在mouseOperation.py中,有興趣可以在文末的Github Repo中查看。

到此這篇關(guān)于基于Python實(shí)現(xiàn)自動(dòng)掃雷詳解的文章就介紹到這了,更多相關(guān)Python自動(dòng)掃雷內(nèi)容請(qǐng)搜索腳本之家以前的文章或繼續(xù)瀏覽下面的相關(guān)文章希望大家以后多多支持腳本之家!
相關(guān)文章
Python實(shí)現(xiàn)調(diào)用達(dá)夢(mèng)數(shù)據(jù)庫(kù)的教程分享
這篇文章主要為大家詳細(xì)介紹了Python是如何調(diào)用達(dá)夢(mèng)數(shù)據(jù)庫(kù)的,文中的示例代碼簡(jiǎn)潔易懂,具有一定的學(xué)習(xí)和參考價(jià)值,感興趣的小伙伴可以跟隨小編一起學(xué)習(xí)一下2023-06-06
Python數(shù)據(jù)預(yù)處理常用的5個(gè)技巧
大家好,本篇文章主要講的是Python數(shù)據(jù)預(yù)處理常用的5個(gè)技巧,感興趣的同學(xué)趕快來(lái)看一看吧,對(duì)你有幫助的話記得收藏一下2022-02-02
詳解DBSCAN算法原理及其Python實(shí)現(xiàn)
DBSCAN,即Density-Based Spatial Clustering of Applications with Noise,基于密度的噪聲應(yīng)用空間聚類,本文將詳細(xì)介紹DBSCAN算法的原理及其Python實(shí)現(xiàn),需要的可以參考下2023-12-12
python讀取txt文件,去掉空格計(jì)算每行長(zhǎng)度的方法
今天小編就為大家分享一篇python讀取txt文件,去掉空格計(jì)算每行長(zhǎng)度的方法,具有很好的參考價(jià)值,希望對(duì)大家有所幫助。一起跟隨小編過(guò)來(lái)看看吧2018-12-12
Python基于OpenCV庫(kù)Adaboost實(shí)現(xiàn)人臉識(shí)別功能詳解
這篇文章主要介紹了Python基于OpenCV庫(kù)Adaboost實(shí)現(xiàn)人臉識(shí)別功能,結(jié)合實(shí)例形式分析了Python下載與安裝OpenCV庫(kù)及相關(guān)人臉識(shí)別操作實(shí)現(xiàn)技巧,需要的朋友可以參考下2018-08-08
Python中數(shù)據(jù)類轉(zhuǎn)換為JSON的方法詳解
這篇文章主要介紹了Python中數(shù)據(jù)類轉(zhuǎn)換為JSON的方法詳解的相關(guān)資料,需要的朋友可以參考下2023-09-09
基于Python實(shí)現(xiàn)png轉(zhuǎn)webp的命令行工具
網(wǎng)頁(yè)上使用webp格式的圖片更加省網(wǎng)絡(luò)流量和存儲(chǔ)空間,但本地圖片一般是png格式的,所以本文就來(lái)為大家介紹一下如何使用Python實(shí)現(xiàn)png轉(zhuǎn)webp功能吧2025-02-02
Tensorflow 利用tf.contrib.learn建立輸入函數(shù)的方法
這篇文章主要介紹了Tensorflow 利用tf.contrib.learn建立輸入函數(shù)的方法,小編覺(jué)得挺不錯(cuò)的,現(xiàn)在分享給大家,也給大家做個(gè)參考。一起跟隨小編過(guò)來(lái)看看吧2018-02-02

