R語(yǔ)言列表和數(shù)據(jù)框的具體使用
1.列表
列表“list”是一種比較的特別的對(duì)象集合,不同的序號(hào)對(duì)于不同的元素,當(dāng)然元素的也可以是不同類型的,那么我們用R語(yǔ)言先簡(jiǎn)單來(lái)構(gòu)造一個(gè)列表。
1.1創(chuàng)建
> a<-c(1:20) > b<-matrix(1:20,4,5) > mlist<-list(a,b) > mlist [[1]] ?[1] ?1 ?2 ?3 ?4 ?5 ?6 ?7 ?8 ?9 10 11 12 13 14 [15] 15 16 17 18 19 20 ? [[2]] ? ? ?[,1] [,2] [,3] [,4] [,5] [1,] ? ?1 ? ?5 ? ?9 ? 13 ? 17 [2,] ? ?2 ? ?6 ? 10 ? 14 ? 18 [3,] ? ?3 ? ?7 ? 11 ? 15 ? 19 [4,] ? ?4 ? ?8 ? 12 ? 16 ? 20
1.2 訪問(wèn)
1.2.1 下標(biāo)訪問(wèn)
> mlist[1] [[1]] ?[1] ?1 ?2 ?3 ?4 ?5 ?6 ?7 ?8 ?9 10 11 12 13 14 [15] 15 16 17 18 19 20 ? > mlist[2] [[1]] ? ? ?[,1] [,2] [,3] [,4] [,5] [1,] ? ?1 ? ?5 ? ?9 ? 13 ? 17 [2,] ? ?2 ? ?6 ? 10 ? 14 ? 18 [3,] ? ?3 ? ?7 ? 11 ? 15 ? 19 [4,] ? ?4 ? ?8 ? 12 ? 16 ? 20
1.2.2 名稱訪問(wèn)
> state.center["x"] $x ?[1] ?-86.7509 -127.2500 -111.6250 ?-92.2992 ?[5] -119.7730 -105.5130 ?-72.3573 ?-74.9841 ?[9] ?-81.6850 ?-83.3736 -126.2500 -113.9300 [13] ?-89.3776 ?-86.0808 ?-93.3714 ?-98.1156 [17] ?-84.7674 ?-92.2724 ?-68.9801 ?-76.6459 [21] ?-71.5800 ?-84.6870 ?-94.6043 ?-89.8065 [25] ?-92.5137 -109.3200 ?-99.5898 -116.8510 [29] ?-71.3924 ?-74.2336 -105.9420 ?-75.1449 [33] ?-78.4686 -100.0990 ?-82.5963 ?-97.1239 [37] -120.0680 ?-77.4500 ?-71.1244 ?-80.5056 [41] ?-99.7238 ?-86.4560 ?-98.7857 -111.3300 [45] ?-72.5450 ?-78.2005 -119.7460 ?-80.6665 [49] ?-89.9941 -107.2560
1.2.3 符號(hào)訪問(wèn)
> state.center$x ?[1] ?-86.7509 -127.2500 -111.6250 ?-92.2992 ?[5] -119.7730 -105.5130 ?-72.3573 ?-74.9841 ?[9] ?-81.6850 ?-83.3736 -126.2500 -113.9300 [13] ?-89.3776 ?-86.0808 ?-93.3714 ?-98.1156 [17] ?-84.7674 ?-92.2724 ?-68.9801 ?-76.6459 [21] ?-71.5800 ?-84.6870 ?-94.6043 ?-89.8065 [25] ?-92.5137 -109.3200 ?-99.5898 -116.8510 [29] ?-71.3924 ?-74.2336 -105.9420 ?-75.1449 [33] ?-78.4686 -100.0990 ?-82.5963 ?-97.1239 [37] -120.0680 ?-77.4500 ?-71.1244 ?-80.5056 [41] ?-99.7238 ?-86.4560 ?-98.7857 -111.3300 [45] ?-72.5450 ?-78.2005 -119.7460 ?-80.6665 [49] ?-89.9941 -107.2560
1.3 注意
一個(gè)中括號(hào)和兩個(gè)中括號(hào)的區(qū)別
一個(gè)中括號(hào)輸出的是列表的一個(gè)子列表,兩個(gè)中括號(hào)輸出的是列表的元素
> class(mlist[1]) [1] "list" > class(mlist[[1]]) [1] "integer"
我們添加元素時(shí)要注意用兩個(gè)中括號(hào)
2.數(shù)據(jù)框
數(shù)據(jù)框是R種的一個(gè)數(shù)據(jù)結(jié)構(gòu),他通常是矩陣形式的數(shù)據(jù),但矩陣各列可以是不同類型的,數(shù)據(jù)框每列是一個(gè)變量,沒(méi)行是一個(gè)觀測(cè)值。
但是,數(shù)據(jù)框又是一種特殊的列表對(duì)象,其class屬性為“data.frame”,各列表成員必須是向量(數(shù)值型、字符型、邏輯型)、因子、數(shù)值型矩陣、列表或者其它數(shù)據(jù)框。向量、因子成員為數(shù)據(jù)框提供一個(gè)變量,如果向量非數(shù)值型會(huì)被強(qiáng)型轉(zhuǎn)換為因子。而矩陣、列表、數(shù)據(jù)框等必須和數(shù)據(jù)框具有相同的行數(shù)。
2.1 創(chuàng)建
> state<-data.frame(state.name,state.abb,state.area) > state ? ? ? ?state.name state.abb state.area 1 ? ? ? ? Alabama ? ? ? ?AL ? ? ?51609 2 ? ? ? ? ?Alaska ? ? ? ?AK ? ? 589757 3 ? ? ? ? Arizona ? ? ? ?AZ ? ? 113909 4 ? ? ? ?Arkansas ? ? ? ?AR ? ? ?53104 5 ? ? ?California ? ? ? ?CA ? ? 158693 6 ? ? ? ?Colorado ? ? ? ?CO ? ? 104247 7 ? ? Connecticut ? ? ? ?CT ? ? ? 5009 8 ? ? ? ?Delaware ? ? ? ?DE ? ? ? 2057 9 ? ? ? ? Florida ? ? ? ?FL ? ? ?58560 10 ? ? ? ?Georgia ? ? ? ?GA ? ? ?58876 11 ? ? ? ? Hawaii ? ? ? ?HI ? ? ? 6450 12 ? ? ? ? ?Idaho ? ? ? ?ID ? ? ?83557 13 ? ? ? Illinois ? ? ? ?IL ? ? ?56400 14 ? ? ? ?Indiana ? ? ? ?IN ? ? ?36291 15 ? ? ? ? ? Iowa ? ? ? ?IA ? ? ?56290 16 ? ? ? ? Kansas ? ? ? ?KS ? ? ?82264 17 ? ? ? Kentucky ? ? ? ?KY ? ? ?40395 18 ? ? ?Louisiana ? ? ? ?LA ? ? ?48523 19 ? ? ? ? ?Maine ? ? ? ?ME ? ? ?33215 20 ? ? ? Maryland ? ? ? ?MD ? ? ?10577 21 ?Massachusetts ? ? ? ?MA ? ? ? 8257 22 ? ? ? Michigan ? ? ? ?MI ? ? ?58216 23 ? ? ?Minnesota ? ? ? ?MN ? ? ?84068 24 ? ?Mississippi ? ? ? ?MS ? ? ?47716 25 ? ? ? Missouri ? ? ? ?MO ? ? ?69686 26 ? ? ? ?Montana ? ? ? ?MT ? ? 147138 27 ? ? ? Nebraska ? ? ? ?NE ? ? ?77227 28 ? ? ? ? Nevada ? ? ? ?NV ? ? 110540 29 ?New Hampshire ? ? ? ?NH ? ? ? 9304 30 ? ? New Jersey ? ? ? ?NJ ? ? ? 7836 31 ? ? New Mexico ? ? ? ?NM ? ? 121666 32 ? ? ? New York ? ? ? ?NY ? ? ?49576 33 North Carolina ? ? ? ?NC ? ? ?52586 34 ? North Dakota ? ? ? ?ND ? ? ?70665 35 ? ? ? ? ? Ohio ? ? ? ?OH ? ? ?41222 36 ? ? ? Oklahoma ? ? ? ?OK ? ? ?69919 37 ? ? ? ? Oregon ? ? ? ?OR ? ? ?96981 38 ? Pennsylvania ? ? ? ?PA ? ? ?45333 39 ? Rhode Island ? ? ? ?RI ? ? ? 1214 40 South Carolina ? ? ? ?SC ? ? ?31055 41 ? South Dakota ? ? ? ?SD ? ? ?77047 42 ? ? ?Tennessee ? ? ? ?TN ? ? ?42244 43 ? ? ? ? ?Texas ? ? ? ?TX ? ? 267339 44 ? ? ? ? ? Utah ? ? ? ?UT ? ? ?84916 45 ? ? ? ?Vermont ? ? ? ?VT ? ? ? 9609 46 ? ? ? Virginia ? ? ? ?VA ? ? ?40815 47 ? ? Washington ? ? ? ?WA ? ? ?68192 48 ?West Virginia ? ? ? ?WV ? ? ?24181 49 ? ? ?Wisconsin ? ? ? ?WI ? ? ?56154 50 ? ? ? ?Wyoming ? ? ? ?WY ? ? ?97914 >?
2.2 訪問(wèn)
2.2.1 下標(biāo)訪問(wèn)
> state[1]
state.name
1 Alabama
2 Alaska
3 Arizona
4 Arkansas
5 California
6 Colorado
7 Connecticut
8 Delaware
9 Florida
10 Georgia
11 Hawaii
12 Idaho
13 Illinois
14 Indiana
15 Iowa
16 Kansas
17 Kentucky
18 Louisiana
19 Maine
20 Maryland
21 Massachusetts
22 Michigan
23 Minnesota
24 Mississippi
25 Missouri
26 Montana
27 Nebraska
28 Nevada
29 New Hampshire
30 New Jersey
31 New Mexico
32 New York
33 North Carolina
34 North Dakota
35 Ohio
36 Oklahoma
37 Oregon
38 Pennsylvania
39 Rhode Island
40 South Carolina
41 South Dakota
42 Tennessee
43 Texas
44 Utah
45 Vermont
46 Virginia
47 Washington
48 West Virginia
49 Wisconsin
50 Wyoming
2.2.2 名稱訪問(wèn)
> state["state.name"]
state.name
1 Alabama
2 Alaska
3 Arizona
4 Arkansas
5 California
6 Colorado
7 Connecticut
8 Delaware
9 Florida
10 Georgia
11 Hawaii
12 Idaho
13 Illinois
14 Indiana
15 Iowa
16 Kansas
17 Kentucky
18 Louisiana
19 Maine
20 Maryland
21 Massachusetts
22 Michigan
23 Minnesota
24 Mississippi
25 Missouri
26 Montana
27 Nebraska
28 Nevada
29 New Hampshire
30 New Jersey
31 New Mexico
32 New York
33 North Carolina
34 North Dakota
35 Ohio
36 Oklahoma
37 Oregon
38 Pennsylvania
39 Rhode Island
40 South Carolina
41 South Dakota
42 Tennessee
43 Texas
44 Utah
45 Vermont
46 Virginia
47 Washington
48 West Virginia
49 Wisconsin
50 Wyoming
2.2.3 符號(hào)訪問(wèn)
> state$state.name [1] "Alabama" "Alaska" [3] "Arizona" "Arkansas" [5] "California" "Colorado" [7] "Connecticut" "Delaware" [9] "Florida" "Georgia" [11] "Hawaii" "Idaho" [13] "Illinois" "Indiana" [15] "Iowa" "Kansas" [17] "Kentucky" "Louisiana" [19] "Maine" "Maryland" [21] "Massachusetts" "Michigan" [23] "Minnesota" "Mississippi" [25] "Missouri" "Montana" [27] "Nebraska" "Nevada" [29] "New Hampshire" "New Jersey" [31] "New Mexico" "New York" [33] "North Carolina" "North Dakota" [35] "Ohio" "Oklahoma" [37] "Oregon" "Pennsylvania" [39] "Rhode Island" "South Carolina" [41] "South Dakota" "Tennessee" [43] "Texas" "Utah" [45] "Vermont" "Virginia" [47] "Washington" "West Virginia" [49] "Wisconsin" "Wyoming"
2.2.4 函數(shù)訪問(wèn)
> attach(state) The following objects are masked from package:datasets:
2.2.4 函數(shù)訪問(wèn)
> attach(state)
The following objects are masked from package:datasets:
state.abb, state.area, state.name
> state.name
[1] "Alabama" "Alaska"
[3] "Arizona" "Arkansas"
[5] "California" "Colorado"
[7] "Connecticut" "Delaware"
[9] "Florida" "Georgia"
[11] "Hawaii" "Idaho"
[13] "Illinois" "Indiana"
[15] "Iowa" "Kansas"
[17] "Kentucky" "Louisiana"
[19] "Maine" "Maryland"
[21] "Massachusetts" "Michigan"
[23] "Minnesota" "Mississippi"
[25] "Missouri" "Montana"
[27] "Nebraska" "Nevada"
[29] "New Hampshire" "New Jersey"
[31] "New Mexico" "New York"
[33] "North Carolina" "North Dakota"
[35] "Ohio" "Oklahoma"
[37] "Oregon" "Pennsylvania"
[39] "Rhode Island" "South Carolina"
[41] "South Dakota" "Tennessee"
[43] "Texas" "Utah"
[45] "Vermont" "Virginia"
[47] "Washington" "West Virginia"
[49] "Wisconsin" "Wyoming"
到此這篇關(guān)于R語(yǔ)言列表和數(shù)據(jù)框的具體使用的文章就介紹到這了,更多相關(guān)R語(yǔ)言列表和數(shù)據(jù)框 內(nèi)容請(qǐng)搜索腳本之家以前的文章或繼續(xù)瀏覽下面的相關(guān)文章希望大家以后多多支持腳本之家!
相關(guān)文章
R語(yǔ)言數(shù)據(jù)可視化繪制Circular?bar?plot實(shí)現(xiàn)環(huán)形柱狀圖
這篇文章主要為大家介紹了R語(yǔ)言繪制Circular?bar?plot實(shí)現(xiàn)環(huán)形柱狀圖的示例詳解,有需要的朋友可以借鑒參考下,希望能夠有所幫助,祝大家多多進(jìn)步2022-02-02
R語(yǔ)言之dplyr包常用函數(shù)方法示例學(xué)習(xí)
這篇文章主要為大家介紹了R語(yǔ)言之dplyr包常用函數(shù)方法示例學(xué)習(xí)詳解,有需要的朋友可以借鑒參考下,希望能夠有所幫助,祝大家多多進(jìn)步,早日升職加薪2023-08-08
使用R語(yǔ)言繪制散點(diǎn)圖結(jié)合邊際分布圖教程
這篇文章主要介紹了使用R語(yǔ)言利用ggplot繪制散點(diǎn)圖,并且在圖像的兩邊繪制邊際分布圖(包括邊際直方圖與邊際密度函數(shù))我們這里介紹兩種方法進(jìn)行繪制2021-11-11
R語(yǔ)言:實(shí)現(xiàn)因子與字符串的互轉(zhuǎn)
這篇文章主要介紹了R語(yǔ)言:實(shí)現(xiàn)因子與字符串的互轉(zhuǎn)操作,具有很好的參考價(jià)值,希望對(duì)大家有所幫助。一起跟隨小編過(guò)來(lái)看看吧2021-04-04
R語(yǔ)言-如何切換科學(xué)計(jì)數(shù)法和更換小數(shù)點(diǎn)位數(shù)
這篇文章主要介紹了R語(yǔ)言-切換科學(xué)計(jì)數(shù)法和更換小數(shù)點(diǎn)位數(shù)的操作,具有很好的參考價(jià)值,希望對(duì)大家有所幫助。一起跟隨小編過(guò)來(lái)看看吧2021-04-04
R語(yǔ)言讀取txt文件中的內(nèi)容實(shí)現(xiàn)
R語(yǔ)言提供了多種讀取文本數(shù)據(jù)的函數(shù),本文主要介紹了R語(yǔ)言讀取txt文件中的內(nèi)容實(shí)現(xiàn),具有一定的參考價(jià)值,感興趣的可以了解一下2024-03-03
R語(yǔ)言基于Keras的MLP神經(jīng)網(wǎng)絡(luò)及環(huán)境搭建
這篇文章主要介紹了R語(yǔ)言基于Keras的MLP神經(jīng)網(wǎng)絡(luò),我并沒(méi)有使用python去對(duì)比結(jié)果,但NSS的文章中有做對(duì)比,數(shù)據(jù)顯示R與Python相比在各方面的差別都不大,具體內(nèi)容介紹跟隨小編一起看看吧2022-01-01
R語(yǔ)言基礎(chǔ)數(shù)據(jù)類型的具體使用
本文主要介紹了R語(yǔ)言基礎(chǔ)數(shù)據(jù)類型的具體使用,文中通過(guò)示例代碼介紹的非常詳細(xì),對(duì)大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價(jià)值,需要的朋友們下面隨著小編來(lái)一起學(xué)習(xí)學(xué)習(xí)吧2023-01-01
R語(yǔ)言繪制corrplot相關(guān)熱圖分析美化示例及詳細(xì)圖解
這篇文章主要為大家介紹了R語(yǔ)言corrplot相關(guān)熱圖分析美化示例及詳細(xì)圖解,有需要的朋友可以借鑒參考下,希望能夠有所幫助,祝大家多多進(jìn)步,早日升職加薪2022-06-06

