python將天氣預(yù)報(bào)可視化
前言
在想題材之際,打開私信,有許多萌新&小伙伴詢問我之前寫的一篇《python爬取天氣預(yù)報(bào)數(shù)據(jù),并實(shí)現(xiàn)數(shù)據(jù)可視化》中的bug怎么解決,雖然我在之前,就在評論區(qū)提供了自己的解決思路,但可能不夠清楚,于是寫這篇文章,來解決bug,并對程序進(jìn)行優(yōu)化。
結(jié)果展示
其中:
紅線代表當(dāng)天最高氣溫,藍(lán)線代表最低氣溫,最高氣溫點(diǎn)上的標(biāo)注為當(dāng)天的天氣情況。
如果使夜晚運(yùn)行程序,則最高氣溫和最低氣溫的點(diǎn)會重合,使由爬取數(shù)據(jù)產(chǎn)生誤差導(dǎo)致的。

程序代碼
詳細(xì)請看注釋
# -*- coding: UTF-8 -*-
"""
# @Time: 2022/1/4 11:02
# @Author: 遠(yuǎn)方的星
# @CSDN: https://blog.csdn.net/qq_44921056
"""
import chardet
import requests
from lxml import etree
from fake_useragent import UserAgent
import pandas as pd
from matplotlib import pyplot as plt
# 隨機(jī)產(chǎn)生請求頭
ua = UserAgent(verify_ssl=False, path='D:/Pycharm/fake_useragent.json')
# 隨機(jī)切換請求頭
def random_ua():
headers = {
"user-agent": ua.random
}
return headers
# 解析頁面
def res_text(url):
res = requests.get(url=url, headers=random_ua())
res.encoding = chardet.detect(res.content)['encoding']
response = res.text
html = etree.HTML(response)
return html
# 獲得未來七天及八到十五天的頁面鏈接
def get_url(url):
html = res_text(url)
url_7 = 'http://www.weather.com.cn/' + html.xpath('//*[@id="someDayNav"]/li[2]/a/@href')[0]
url_8_15 = 'http://www.weather.com.cn/' + html.xpath('//*[@id="someDayNav"]/li[3]/a/@href')[0]
# print(url_7)
# print(url_8_15)
return url_7, url_8_15
# 獲取未來七天的天氣情況
def get_data_7(url):
html = res_text(url)
list_s = html.xpath('//*[@id="7d"]/ul/li') # 獲取天氣數(shù)據(jù)列表
Date, Weather, Low, High = [], [], [], []
for i in range(len(list_s)):
list_date = list_s[i].xpath('./h1/text()')[0] # 獲取日期,如:4日(明天)
# print(list_data)
list_weather = list_s[i].xpath('./p[1]/@title')[0] # 獲取天氣情況,如:小雨轉(zhuǎn)雨夾雪
# print(list_weather)
tem_low = list_s[i].xpath('./p[2]/i/text()') # 獲取最低氣溫
tem_high = list_s[i].xpath('./p[2]/span/text()') # 獲取最高氣溫
if tem_high == []: # 遇到夜晚情況,篩掉當(dāng)天的最高氣溫
tem_high = tem_low # 無最高氣溫時(shí),使最高氣溫等于最低氣溫
tem_low = int(tem_low[0].replace('℃', '')) # 將氣溫?cái)?shù)據(jù)處理
tem_high = int(tem_high[0].replace('℃', ''))
# print(type(tem_high))
Date.append(list_date), Weather.append(list_weather), Low.append(tem_low), High.append(tem_high)
excel = pd.DataFrame() # 定義一個(gè)二維列表
excel['日期'] = Date
excel['天氣'] = Weather
excel['最低氣溫'] = Low
excel['最高氣溫'] = High
# print(excel)
return excel
def get_data_8_15(url):
html = res_text(url)
list_s = html.xpath('//*[@id="15d"]/ul/li')
Date, Weather, Low, High = [], [], [], []
for i in range(len(list_s)):
# data_s[0]是日期,如:周二(11日),data_s[1]是天氣情況,如:陰轉(zhuǎn)晴,data_s[2]是最低溫度,如:/-3℃
data_s = list_s[i].xpath('./span/text()')
# print(data_s)
date = modify_str(data_s[0]) # 獲取日期情況
weather = data_s[1]
low = int(data_s[2].replace('/', '').replace('℃', ''))
high = int(list_s[i].xpath('./span/em/text()')[0].replace('℃', ''))
# print(date, weather, low, high)
Date.append(date), Weather.append(weather), Low.append(low), High.append(high)
# print(Date, Weather, Low, High)
excel = pd.DataFrame() # 定義一個(gè)二維列表
excel['日期'] = Date
excel['天氣'] = Weather
excel['最低氣溫'] = Low
excel['最高氣溫'] = High
# print(excel)
return excel
# 將8-15天日期格式改成與未來7天一致
def modify_str(date):
date_1 = date.split('(')
date_2 = date_1[1].replace(')', '')
date_result = date_2 + '(' + date_1[0] + ')'
return date_result
# 實(shí)現(xiàn)數(shù)據(jù)可視化
def get_image(date, weather, high, low):
# 用來正常顯示中文標(biāo)簽
plt.rcParams['font.sans-serif'] = ['SimHei']
# 用來正常顯示負(fù)號
plt.rcParams['axes.unicode_minus'] = False
# 根據(jù)數(shù)據(jù)繪制圖形
fig = plt.figure(dpi=128, figsize=(10, 6))
ax = fig.add_subplot(111)
plt.plot(date, high, c='red', alpha=0.5, marker='*')
plt.plot(date, low, c='blue', alpha=0.5, marker='o')
# 給圖表中兩條折線中間的部分上色
plt.fill_between(date, high, low, facecolor='blue', alpha=0.2)
# 設(shè)置圖表格式
plt.title('邳州近15天天氣預(yù)報(bào)', fontsize=24)
plt.xlabel('日期', fontsize=12)
# 繪制斜的標(biāo)簽,以免重疊
fig.autofmt_xdate()
plt.ylabel('氣溫', fontsize=12)
# 參數(shù)刻度線設(shè)置
plt.tick_params(axis='both', which='major', labelsize=10)
# 修改刻度
plt.xticks(date[::1])
# 對點(diǎn)進(jìn)行標(biāo)注,在最高氣溫點(diǎn)處標(biāo)注當(dāng)天的天氣情況
for i in range(15):
ax.annotate(weather[i], xy=(date[i], high[i]))
# 顯示圖片
plt.show()
def main():
base_url = 'http://www.weather.com.cn/weather1d/101190805.shtml'
url_7, url_8_15 = get_url(base_url)
data_1 = get_data_7(url_7)
data_2 = get_data_8_15(url_8_15)
data = pd.concat([data_1, data_2], axis=0, ignore_index=True) # ignore_index=True實(shí)現(xiàn)兩張表拼接,不保留原索引
get_image(data['日期'], data['天氣'], data['最高氣溫'], data['最低氣溫'])
if __name__ == '__main__':
main()
期望
這是以一個(gè)城市為例的可視化,下次爭取做到根據(jù)輸入的城市進(jìn)行天氣預(yù)報(bào)可視化
到此這篇關(guān)于python將天氣預(yù)報(bào)可視化的文章就介紹到這了,更多相關(guān)python天氣預(yù)報(bào)內(nèi)容請搜索腳本之家以前的文章或繼續(xù)瀏覽下面的相關(guān)文章希望大家以后多多支持腳本之家!
相關(guān)文章
Python基于Opencv來快速實(shí)現(xiàn)人臉識別過程詳解(完整版)
這篇文章主要介紹了Python基于Opencv來快速實(shí)現(xiàn)人臉識別過程詳解(完整版)隨著人工智能的日益火熱,計(jì)算機(jī)視覺領(lǐng)域發(fā)展迅速,今天就為大家?guī)碜罨A(chǔ)的人臉識別基礎(chǔ),從一個(gè)個(gè)函數(shù)開始走進(jìn)這個(gè)奧妙的世界,需要的朋友可以參考下2019-07-07
Python數(shù)據(jù)挖掘中常用的五種AutoEDA 工具總結(jié)
大家好,我們都知道在數(shù)據(jù)挖掘的過程中,數(shù)據(jù)探索性分析一直是非常耗時(shí)的一個(gè)環(huán)節(jié),但也是繞不開的一個(gè)環(huán)節(jié),本篇文章帶你盤點(diǎn)數(shù)據(jù)挖掘中常見的5種 AutoEDA 工具2021-11-11
Python實(shí)現(xiàn)統(tǒng)計(jì)圖像連通域的示例詳解
這篇文章主要為大家詳細(xì)介紹了如何利用Python實(shí)現(xiàn)統(tǒng)計(jì)圖像連通域的功能,文中的示例代碼講解詳細(xì),感興趣的小伙伴可以跟隨小編一起了解一下2023-04-04
從基礎(chǔ)到進(jìn)階帶你玩轉(zhuǎn)Python中的異常處理
在編程過程中,我們經(jīng)常會遇到各種運(yùn)行時(shí)錯(cuò)誤,比如除零錯(cuò)誤、文件未找到錯(cuò)誤等,本文將介紹Python異常處理的基礎(chǔ)知識,希望對大家有所幫助2025-01-01
python進(jìn)程管理工具supervisor使用實(shí)例
這篇文章主要介紹了python進(jìn)程管理工具supervisor使用實(shí)例,本文介紹了supervisor的安裝、配置、使用等內(nèi)容,需要的朋友可以參考下2014-09-09
Python實(shí)現(xiàn)根據(jù)Excel生成Model和數(shù)據(jù)導(dǎo)入腳本
最近遇到一個(gè)需求,有幾十個(gè)Excel,每個(gè)的字段都不一樣,然后都差不多是第一行是表頭,后面幾千上萬的數(shù)據(jù),需要把這些Excel中的數(shù)據(jù)全都加入某個(gè)已經(jīng)上線的Django項(xiàng)目。所以我造了個(gè)自動生成?Model和導(dǎo)入腳本的輪子,希望對大家有所幫助2022-11-11

