Python機(jī)器視覺之基于OpenCV的手勢(shì)檢測
1 簡介
今天學(xué)長向大家介紹一個(gè)機(jī)器視覺項(xiàng)目
基于機(jī)器視覺opencv的手勢(shì)檢測 手勢(shì)識(shí)別 算法
2 傳統(tǒng)機(jī)器視覺的手勢(shì)檢測
普通機(jī)器視覺手勢(shì)檢測的基本流程如下:

其中輪廓的提取,多邊形擬合曲線的求法,凸包集和凹陷集的求法都是采用opencv中自帶的函數(shù)。手勢(shì)數(shù)字的識(shí)別是利用凸包點(diǎn)以及凹陷點(diǎn)和手部中心點(diǎn)的幾何關(guān)系,簡單的做了下邏輯判別了(可以肯定的是這種方法很爛),具體的做法是先在手部定位出2個(gè)中心點(diǎn)坐標(biāo),這2個(gè)中心點(diǎn)坐標(biāo)之間的距離閾值由程序設(shè)定,其中一個(gè)中心點(diǎn)就是利用OpenNI跟蹤得到的手部位置。有了這2個(gè)中心點(diǎn)的坐標(biāo),在程序中就可以分別計(jì)算出在這2個(gè)中心點(diǎn)坐標(biāo)上的凸凹點(diǎn)的個(gè)數(shù)。當(dāng)然了,這樣做的前提是用人在做手勢(shì)表示數(shù)字的同時(shí)應(yīng)該是將手指的方向朝上(因?yàn)闆]有像機(jī)器學(xué)習(xí)那樣通過樣本來訓(xùn)練,所以使用時(shí)條件要苛刻很多)。利用上面求出的4種點(diǎn)的個(gè)數(shù)(另外程序中還設(shè)置了2個(gè)輔助計(jì)算點(diǎn)的個(gè)數(shù),具體見代碼部分)和簡單的邏輯判斷就可以識(shí)別出數(shù)字0~5了。其它的數(shù)字可以依照具體的邏輯去設(shè)計(jì)(還可以設(shè)計(jì)出多位數(shù)字的識(shí)別),只是數(shù)字越多設(shè)計(jì)起來越復(fù)雜,因?yàn)橐紤]到它們之間的干擾性,且這種不通用的設(shè)計(jì)方法也沒有太多的實(shí)際意義。
2.1 輪廓檢測法
使用 void convexityDefects(InputArray contour, InputArray convexhull, OutputArray convexityDefects) 方法
該函數(shù)的作用是對(duì)輸入的輪廓contour,凸包集合來檢測其輪廓的凸型缺陷,一個(gè)凸型缺陷結(jié)構(gòu)體包括4個(gè)元素,缺陷起點(diǎn)坐標(biāo),缺陷終點(diǎn)坐標(biāo),缺陷中離凸包線距離最遠(yuǎn)的點(diǎn)的坐標(biāo),以及此時(shí)最遠(yuǎn)的距離。參數(shù)3即其輸出的凸型缺陷結(jié)構(gòu)體向量。
其凸型缺陷的示意圖如下所示:

第1個(gè)參數(shù)雖然寫的是contour,字面意思是輪廓,但是本人實(shí)驗(yàn)過很多次,發(fā)現(xiàn)如果該參數(shù)為目標(biāo)通過輪廓檢測得到的原始輪廓的話,則程序運(yùn)行到onvexityDefects()函數(shù)時(shí)會(huì)報(bào)內(nèi)存錯(cuò)誤。因此本程序中采用的不是物體原始的輪廓,而是經(jīng)過多項(xiàng)式曲線擬合后的輪廓,即多項(xiàng)式曲線,這樣程序就會(huì)順利地運(yùn)行得很好。另外由于在手勢(shì)識(shí)別過程中可能某一幀檢測出來的輪廓非常?。ㄓ捎谀撤N原因),以致于少到只有1個(gè)點(diǎn),這時(shí)候如果程序運(yùn)行到onvexityDefects()函數(shù)時(shí)就會(huì)報(bào)如下的錯(cuò)誤:
int Mat::checkVector(int _elemChannels, int _depth, bool _requireContinuous) const
{
return (depth() == _depth || _depth <= 0) &&
(isContinuous() || !_requireContinuous) &&
((dims == 2 && (((rows == 1 || cols == 1) && channels() == _elemChannels) || (cols == _elemChannels))) ||
(dims == 3 && channels() == 1 && size.p[2] == _elemChannels && (size.p[0] == 1 || size.p[1] == 1) &&
(isContinuous() || step.p[1] == step.p[2]*size.p[2])))
? (int)(total()*channels()/_elemChannels) : -1;
}
該函數(shù)源碼大概意思就是說對(duì)應(yīng)的Mat矩陣如果其深度,連續(xù)性,通道數(shù),行列式滿足一定條件的話就返回Mat元素的個(gè)數(shù)和其通道數(shù)的乘積,否則返回-1;而本文是要求其返回值大于3,有得知此處輸入多邊形曲線(即參數(shù)1)的通道數(shù)為2,所以還需要求其元素的個(gè)數(shù)大于1.5,即大于2才滿足ptnum > 3。簡單的說就是用convexityDefects()函數(shù)來對(duì)多邊形曲線進(jìn)行凹陷檢測時(shí),必須要求參數(shù)1曲線本身至少有2個(gè)點(diǎn)(也不知道這樣分析對(duì)不對(duì))。因此本人在本次程序convexityDefects()函數(shù)前加入了if(Mat(approx_poly_curve).checkVector(2, CV_32S) > 3)來判斷,只有滿足該if條件,才會(huì)進(jìn)行后面的凹陷檢測。這樣程序就不會(huì)再出現(xiàn)類似的bug了。
第2個(gè)參數(shù)一般是由opencv中的函數(shù)convexHull()獲得的,一般情況下該參數(shù)里面存的是凸包集合中的點(diǎn)在多項(xiàng)式曲線點(diǎn)中的位置索引,且該參數(shù)以vector的形式存在,因此參數(shù)convexhull中其元素的類型為unsigned int。在本次凹陷點(diǎn)檢測函數(shù)convexityDefects()里面根據(jù)文檔,要求該參數(shù)為Mat型。因此在使用convexityDefects()的參數(shù)2時(shí),一般將vector直接轉(zhuǎn)換Mat型。
參數(shù)3是一個(gè)含有4個(gè)元素的結(jié)構(gòu)體的集合,如果在c++的版本中,該參數(shù)可以直接用vector來代替,Vec4i中的4個(gè)元素分別表示凹陷曲線段的起始坐標(biāo)索引,終點(diǎn)坐標(biāo)索引,離凸包集曲線最遠(yuǎn)點(diǎn)的坐標(biāo)索引以及此時(shí)的最遠(yuǎn)距離值,這4個(gè)值都是整數(shù)。在c版本的opencv中一般不是保存的索引,而是坐標(biāo)值。
2.2 算法結(jié)果
數(shù)字“0”的識(shí)別結(jié)果:

數(shù)字“1”的識(shí)別結(jié)果

數(shù)字“2”的識(shí)別結(jié)果

數(shù)字“3”的識(shí)別結(jié)果:

數(shù)字“4”的識(shí)別結(jié)果:

數(shù)字“5”的識(shí)別結(jié)果:

2.3 整體代碼實(shí)現(xiàn)
2.3.1 算法流程
學(xué)長實(shí)現(xiàn)過程和上面的系統(tǒng)流程圖類似,大概過程如下:
1. 求出手部的掩膜
2. 求出掩膜的輪廓
3. 求出輪廓的多變形擬合曲線
4. 求出多邊形擬合曲線的凸包集,找出凸點(diǎn)
5. 求出多變形擬合曲線的凹陷集,找出凹點(diǎn)
6. 利用上面的凸凹點(diǎn)和手部中心點(diǎn)的幾何關(guān)系來做簡單的數(shù)字手勢(shì)識(shí)別
(這里用的是C語言寫的,這個(gè)代碼是學(xué)長早期寫的,同學(xué)們需要的話,學(xué)長出一個(gè)python版本的)
#include <iostream>
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include <opencv2/core/core.hpp>
#include "copenni.cpp"
#include <iostream>
#define DEPTH_SCALE_FACTOR 255./4096.
#define ROI_HAND_WIDTH 140
#define ROI_HAND_HEIGHT 140
#define MEDIAN_BLUR_K 5
#define XRES 640
#define YRES 480
#define DEPTH_SEGMENT_THRESH 5
#define MAX_HANDS_COLOR 10
#define MAX_HANDS_NUMBER 10
#define HAND_LIKELY_AREA 2000
#define DELTA_POINT_DISTENCE 25 //手部中心點(diǎn)1和中心點(diǎn)2距離的閾值
#define SEGMENT_POINT1_DISTANCE 27 //凸點(diǎn)與手部中心點(diǎn)1遠(yuǎn)近距離的閾值
#define SEGMENT_POINT2_DISTANCE 30 //凸點(diǎn)與手部中心點(diǎn)2遠(yuǎn)近距離的閾值
using namespace cv;
using namespace xn;
using namespace std;
int main (int argc, char **argv)
{
unsigned int convex_number_above_point1 = 0;
unsigned int concave_number_above_point1 = 0;
unsigned int convex_number_above_point2 = 0;
unsigned int concave_number_above_point2 = 0;
unsigned int convex_assist_above_point1 = 0;
unsigned int convex_assist_above_point2 = 0;
unsigned int point_y1 = 0;
unsigned int point_y2 = 0;
int number_result = -1;
bool recognition_flag = false; //開始手部數(shù)字識(shí)別的標(biāo)志
vector<Scalar> color_array;//采用默認(rèn)的10種顏色
{
color_array.push_back(Scalar(255, 0, 0));
color_array.push_back(Scalar(0, 255, 0));
color_array.push_back(Scalar(0, 0, 255));
color_array.push_back(Scalar(255, 0, 255));
color_array.push_back(Scalar(255, 255, 0));
color_array.push_back(Scalar(0, 255, 255));
color_array.push_back(Scalar(128, 255, 0));
color_array.push_back(Scalar(0, 128, 255));
color_array.push_back(Scalar(255, 0, 128));
color_array.push_back(Scalar(255, 128, 255));
}
vector<unsigned int> hand_depth(MAX_HANDS_NUMBER, 0);
vector<Rect> hands_roi(MAX_HANDS_NUMBER, Rect(XRES/2, YRES/2, ROI_HAND_WIDTH, ROI_HAND_HEIGHT));
namedWindow("color image", CV_WINDOW_AUTOSIZE);
namedWindow("depth image", CV_WINDOW_AUTOSIZE);
namedWindow("hand_segment", CV_WINDOW_AUTOSIZE); //顯示分割出來的手的區(qū)域
namedWindow("handrecognition", CV_WINDOW_AUTOSIZE); //顯示0~5數(shù)字識(shí)別的圖像
COpenNI openni;
if(!openni.Initial())
return 1;
if(!openni.Start())
return 1;
while(1) {
if(!openni.UpdateData()) {
return 1;
}
/*獲取并顯示色彩圖像*/
Mat color_image_src(openni.image_metadata_.YRes(), openni.image_metadata_.XRes(),
CV_8UC3, (char *)openni.image_metadata_.Data());
Mat color_image;
cvtColor(color_image_src, color_image, CV_RGB2BGR);
Mat hand_segment_mask(color_image.size(), CV_8UC1, Scalar::all(0));
for(auto itUser = openni.hand_points_.cbegin(); itUser != openni.hand_points_.cend(); ++itUser) {
point_y1 = itUser->second.Y;
point_y2 = itUser->second.Y + DELTA_POINT_DISTENCE;
circle(color_image, Point(itUser->second.X, itUser->second.Y),
5, color_array.at(itUser->first % color_array.size()), 3, 8);
/*設(shè)置不同手部的深度*/
hand_depth.at(itUser->first % MAX_HANDS_COLOR) = (unsigned int)(itUser->second.Z* DEPTH_SCALE_FACTOR);//itUser->first會(huì)導(dǎo)致程序出現(xiàn)bug
/*設(shè)置不同手部的不同感興趣區(qū)域*/
hands_roi.at(itUser->first % MAX_HANDS_NUMBER) = Rect(itUser->second.X - ROI_HAND_WIDTH/2, itUser->second.Y - ROI_HAND_HEIGHT/2,
ROI_HAND_WIDTH, ROI_HAND_HEIGHT);
hands_roi.at(itUser->first % MAX_HANDS_NUMBER).x = itUser->second.X - ROI_HAND_WIDTH/2;
hands_roi.at(itUser->first % MAX_HANDS_NUMBER).y = itUser->second.Y - ROI_HAND_HEIGHT/2;
hands_roi.at(itUser->first % MAX_HANDS_NUMBER).width = ROI_HAND_WIDTH;
hands_roi.at(itUser->first % MAX_HANDS_NUMBER).height = ROI_HAND_HEIGHT;
if(hands_roi.at(itUser->first % MAX_HANDS_NUMBER).x <= 0)
hands_roi.at(itUser->first % MAX_HANDS_NUMBER).x = 0;
if(hands_roi.at(itUser->first % MAX_HANDS_NUMBER).x > XRES)
hands_roi.at(itUser->first % MAX_HANDS_NUMBER).x = XRES;
if(hands_roi.at(itUser->first % MAX_HANDS_NUMBER).y <= 0)
hands_roi.at(itUser->first % MAX_HANDS_NUMBER).y = 0;
if(hands_roi.at(itUser->first % MAX_HANDS_NUMBER).y > YRES)
hands_roi.at(itUser->first % MAX_HANDS_NUMBER).y = YRES;
}
imshow("color image", color_image);
/*獲取并顯示深度圖像*/
Mat depth_image_src(openni.depth_metadata_.YRes(), openni.depth_metadata_.XRes(),
CV_16UC1, (char *)openni.depth_metadata_.Data());//因?yàn)閗inect獲取到的深度圖像實(shí)際上是無符號(hào)的16位數(shù)據(jù)
Mat depth_image;
depth_image_src.convertTo(depth_image, CV_8U, DEPTH_SCALE_FACTOR);
imshow("depth image", depth_image);
//取出手的mask部分
//不管原圖像時(shí)多少通道的,mask矩陣聲明為單通道就ok
for(auto itUser = openni.hand_points_.cbegin(); itUser != openni.hand_points_.cend(); ++itUser) {
for(int i = hands_roi.at(itUser->first % MAX_HANDS_NUMBER).x; i < std::min(hands_roi.at(itUser->first % MAX_HANDS_NUMBER).x+hands_roi.at(itUser->first % MAX_HANDS_NUMBER).width, XRES); i++)
for(int j = hands_roi.at(itUser->first % MAX_HANDS_NUMBER).y; j < std::min(hands_roi.at(itUser->first % MAX_HANDS_NUMBER).y+hands_roi.at(itUser->first % MAX_HANDS_NUMBER).height, YRES); j++) {
hand_segment_mask.at<unsigned char>(j, i) = ((hand_depth.at(itUser->first % MAX_HANDS_NUMBER)-DEPTH_SEGMENT_THRESH) < depth_image.at<unsigned char>(j, i))
& ((hand_depth.at(itUser->first % MAX_HANDS_NUMBER)+DEPTH_SEGMENT_THRESH) > depth_image.at<unsigned char>(j,i));
}
}
medianBlur(hand_segment_mask, hand_segment_mask, MEDIAN_BLUR_K);
Mat hand_segment(color_image.size(), CV_8UC3);
color_image.copyTo(hand_segment, hand_segment_mask);
/*對(duì)mask圖像進(jìn)行輪廓提取,并在手勢(shì)識(shí)別圖像中畫出來*/
std::vector< std::vector<Point> > contours;
findContours(hand_segment_mask, contours, CV_RETR_LIST, CV_CHAIN_APPROX_SIMPLE);//找出mask圖像的輪廓
Mat hand_recognition_image = Mat::zeros(color_image.rows, color_image.cols, CV_8UC3);
for(int i = 0; i < contours.size(); i++) { //只有在檢測到輪廓時(shí)才會(huì)去求它的多邊形,凸包集,凹陷集
recognition_flag = true;
/*找出輪廓圖像多邊形擬合曲線*/
Mat contour_mat = Mat(contours[i]);
if(contourArea(contour_mat) > HAND_LIKELY_AREA) { //比較有可能像手的區(qū)域
std::vector<Point> approx_poly_curve;
approxPolyDP(contour_mat, approx_poly_curve, 10, true);//找出輪廓的多邊形擬合曲線
std::vector< std::vector<Point> > approx_poly_curve_debug;
approx_poly_curve_debug.push_back(approx_poly_curve);
drawContours(hand_recognition_image, contours, i, Scalar(255, 0, 0), 1, 8); //畫出輪廓
// drawContours(hand_recognition_image, approx_poly_curve_debug, 0, Scalar(256, 128, 128), 1, 8); //畫出多邊形擬合曲線
/*對(duì)求出的多邊形擬合曲線求出其凸包集*/
vector<int> hull;
convexHull(Mat(approx_poly_curve), hull, true);
for(int i = 0; i < hull.size(); i++) {
circle(hand_recognition_image, approx_poly_curve[hull[i]], 2, Scalar(0, 255, 0), 2, 8);
/*統(tǒng)計(jì)在中心點(diǎn)1以上凸點(diǎn)的個(gè)數(shù)*/
if(approx_poly_curve[hull[i]].y <= point_y1) {
/*統(tǒng)計(jì)凸點(diǎn)與中心點(diǎn)1的y軸距離*/
long dis_point1 = abs(long(point_y1 - approx_poly_curve[hull[i]].y));
int dis1 = point_y1 - approx_poly_curve[hull[i]].y;
if(dis_point1 > SEGMENT_POINT1_DISTANCE && dis1 >= 0) {
convex_assist_above_point1++;
}
convex_number_above_point1++;
}
/*統(tǒng)計(jì)在中心點(diǎn)2以上凸點(diǎn)的個(gè)數(shù)*/
if(approx_poly_curve[hull[i]].y <= point_y2) {
/*統(tǒng)計(jì)凸點(diǎn)與中心點(diǎn)1的y軸距離*/
long dis_point2 = abs(long(point_y2 - approx_poly_curve[hull[i]].y));
int dis2 = point_y2 - approx_poly_curve[hull[i]].y;
if(dis_point2 > SEGMENT_POINT2_DISTANCE && dis2 >= 0) {
convex_assist_above_point2++;
}
convex_number_above_point2++;
}
}
// /*對(duì)求出的多邊形擬合曲線求出凹陷集*/
std::vector<Vec4i> convexity_defects;
if(Mat(approx_poly_curve).checkVector(2, CV_32S) > 3)
convexityDefects(approx_poly_curve, Mat(hull), convexity_defects);
for(int i = 0; i < convexity_defects.size(); i++) {
circle(hand_recognition_image, approx_poly_curve[convexity_defects[i][2]] , 2, Scalar(0, 0, 255), 2, 8);
/*統(tǒng)計(jì)在中心點(diǎn)1以上凹陷點(diǎn)的個(gè)數(shù)*/
if(approx_poly_curve[convexity_defects[i][2]].y <= point_y1)
concave_number_above_point1++;
/*統(tǒng)計(jì)在中心點(diǎn)2以上凹陷點(diǎn)的個(gè)數(shù)*/
if(approx_poly_curve[convexity_defects[i][2]].y <= point_y2)
concave_number_above_point2++;
}
}
}
/**畫出手勢(shì)的中心點(diǎn)**/
for(auto itUser = openni.hand_points_.cbegin(); itUser != openni.hand_points_.cend(); ++itUser) {
circle(hand_recognition_image, Point(itUser->second.X, itUser->second.Y), 3, Scalar(0, 255, 255), 3, 8);
circle(hand_recognition_image, Point(itUser->second.X, itUser->second.Y + 25), 3, Scalar(255, 0, 255), 3, 8);
}
/*手勢(shì)數(shù)字0~5的識(shí)別*/
//"0"的識(shí)別
if((convex_assist_above_point1 ==0 && convex_number_above_point2 >= 2 && convex_number_above_point2 <= 3 &&
concave_number_above_point2 <= 1 && concave_number_above_point1 <= 1) || (concave_number_above_point1 ==0
|| concave_number_above_point2 == 0) && recognition_flag == true)
number_result = 0;
//"1"的識(shí)別
if(convex_assist_above_point1 ==1 && convex_number_above_point1 >=1 && convex_number_above_point1 <=2 &&
convex_number_above_point2 >=2 && convex_assist_above_point2 == 1)
number_result = 1;
//"2"的識(shí)別
if(convex_number_above_point1 == 2 && concave_number_above_point1 == 1 && convex_assist_above_point2 == 2
/*convex_assist_above_point1 <=1*/ && concave_number_above_point2 == 1)
number_result = 2;
//"3"的識(shí)別
if(convex_number_above_point1 == 3 && concave_number_above_point1 <= 3 &&
concave_number_above_point1 >=1 && convex_number_above_point2 >= 3 && convex_number_above_point2 <= 4 &&
convex_assist_above_point2 == 3)
number_result = 3;
//"4"的識(shí)別
if(convex_number_above_point1 == 4 && concave_number_above_point1 <=3 && concave_number_above_point1 >=2 &&
convex_number_above_point2 == 4)
number_result = 4;
//"5"的識(shí)別
if(convex_number_above_point1 >=4 && convex_number_above_point2 == 5 && concave_number_above_point2 >= 3 &&
convex_number_above_point2 >= 4)
number_result = 5;
if(number_result !=0 && number_result != 1 && number_result != 2 && number_result != 3 && number_result != 4 && number_result != 5)
number_result == -1;
/*在手勢(shì)識(shí)別圖上顯示匹配的數(shù)字*/
std::stringstream number_str;
number_str << number_result;
putText(hand_recognition_image, "Match: ", Point(0, 60), 4, 1, Scalar(0, 255, 0), 2, 0 );
if(number_result == -1)
putText(hand_recognition_image, " ", Point(120, 60), 4, 2, Scalar(255, 0 ,0), 2, 0);
else
putText(hand_recognition_image, number_str.str(), Point(150, 60), 4, 2, Scalar(255, 0 ,0), 2, 0);
imshow("handrecognition", hand_recognition_image);
imshow("hand_segment", hand_segment);
/*一個(gè)循環(huán)中對(duì)有些變量進(jìn)行初始化操作*/
convex_number_above_point1 = 0;
convex_number_above_point2 = 0;
concave_number_above_point1 = 0;
concave_number_above_point2 = 0;
convex_assist_above_point1 = 0;
convex_assist_above_point2 = 0;
number_result = -1;
recognition_flag = false;
number_str.clear();
waitKey(20);
}
}
3 深度學(xué)習(xí)方法做手勢(shì)識(shí)別
3.1 經(jīng)典的卷積神經(jīng)網(wǎng)絡(luò)
卷積神經(jīng)網(wǎng)絡(luò)的優(yōu)勢(shì)就在于它能夠從常見的視覺任務(wù)中自動(dòng)學(xué)習(xí)目 標(biāo)數(shù)據(jù)的特征, 然后將這些特征用于某種特定任務(wù)的模型。 隨著時(shí)代的發(fā)展, 深度學(xué)習(xí)也形成了一些經(jīng)典的卷積神經(jīng)網(wǎng)絡(luò)。
3.2 YOLO系列
YOLO 系列的網(wǎng)絡(luò)模型最早源于 2016 年, 之后幾年經(jīng)過不斷改進(jìn)相繼推出YOLOv2、 YOLOv3 等網(wǎng)絡(luò),直到今日yoloV5也誕生了,不得不感慨一句,darknet是真的肝。
最具代表性的yolov3的結(jié)構(gòu)

3.3 SSD
SSD 作為典型的一階段網(wǎng)絡(luò)模型, 具有更高的操作性, 端到端的學(xué)習(xí)模式同樣受到眾多研究者的喜愛

3.4 實(shí)現(xiàn)步驟
3.4.1 數(shù)據(jù)集
手勢(shì)識(shí)別的數(shù)據(jù)集來自于丹成學(xué)長實(shí)驗(yàn)室,由于中國手勢(shì)表示3的手勢(shì)根據(jù)地區(qū)有略微差異,按照這個(gè)數(shù)據(jù)集的手勢(shì)訓(xùn)練與測試即可。
- 圖像大小:100*100
- 像素顏色空間:RGB種類
- 圖片種類:6 種(0,1,2,3,4,5)
- 每種圖片數(shù)量:200 張
一共6種手勢(shì),每種手勢(shì)200張圖片,共1200張圖片(100x100RGB)

3.4.2 圖像預(yù)處理

實(shí)際圖片處理展示:resize前先高斯模糊,提取邊緣后可以根據(jù)實(shí)際需要增加一次中值濾波去噪:

3.4.3 構(gòu)建卷積神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)
使用tensorflow的框架,構(gòu)建一個(gè)簡單的網(wǎng)絡(luò)結(jié)構(gòu)


Dropout: 增加魯棒性幫助正則化和避免過擬合
一個(gè)相關(guān)的早期使用這種技術(shù)的論文((ImageNet Classification with Deep Convolutional Neural Networks, by Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton (2012).))中啟發(fā)性的dropout解釋是:
因?yàn)橐粋€(gè)神經(jīng)元不能依賴其他特定的神經(jīng)元。因此,不得不去學(xué)習(xí)隨機(jī)子集神經(jīng)元間的魯棒性的有用連接。換句話說。想象我們的神經(jīng)元作為要給預(yù)測的模型,dropout是一種方式可以確保我們的模型在丟失一個(gè)個(gè)體線索的情況下保持健壯的模型。在這種情況下,可以說他的作用和L1和L2范式正則化是相同的。都是來減少權(quán)重連接,然后增加網(wǎng)絡(luò)模型在缺失個(gè)體連接信息情況下的魯棒性。在提高神經(jīng)網(wǎng)絡(luò)表現(xiàn)方面效果較好。
3.4.4 實(shí)驗(yàn)訓(xùn)練過程及結(jié)果
經(jīng)過約4800輪的訓(xùn)練后,loss基本收斂,在0.6左右,在120份的測試樣本上的模型準(zhǔn)確率能夠達(dá)到約96%


3.5 關(guān)鍵代碼
# 作者:丹成學(xué)長 Q746876041, 需要完整代碼聯(lián)系學(xué)長獲取
import tensorflow as tf
IMAGE_SIZE = 100
NUM_CHANNELS = 1
CONV1_SIZE = 4
CONV1_KERNEL_NUM = 8
CONV2_SIZE = 2
CONV2_KERNEL_NUM = 16
FC_SIZE = 512
OUTPUT_NODE = 6
def get_weight(shape, regularizer):
w = tf.Variable(tf.truncated_normal(shape,stddev=0.1))
if regularizer != None: tf.add_to_collection('losses', tf.contrib.layers.l2_regularizer(regularizer)(w))
return w
def get_bias(shape):
b = tf.Variable(tf.zeros(shape))
return b
def conv2d(x,w):
return tf.nn.conv2d(x, w, strides=[1, 1, 1, 1], padding='SAME')
def max_pool_8x8(x):
return tf.nn.max_pool(x, ksize=[1, 8, 8, 1], strides=[1, 4, 4, 1], padding='SAME')
def max_pool_4x4(x):
return tf.nn.max_pool(x, ksize=[1, 4, 4, 1], strides=[1, 2, 2, 1], padding='SAME')
def forward(x, train, regularizer):
conv1_w = get_weight([CONV1_SIZE, CONV1_SIZE, NUM_CHANNELS, CONV1_KERNEL_NUM], regularizer)
conv1_b = get_bias([CONV1_KERNEL_NUM])
conv1 = conv2d(x, conv1_w)
relu1 = tf.nn.relu(tf.nn.bias_add(conv1, conv1_b))
pool1 = max_pool_8x8(relu1)
conv2_w = get_weight([CONV2_SIZE, CONV2_SIZE, CONV1_KERNEL_NUM, CONV2_KERNEL_NUM],regularizer)
conv2_b = get_bias([CONV2_KERNEL_NUM])
conv2 = conv2d(pool1, conv2_w)
relu2 = tf.nn.relu(tf.nn.bias_add(conv2, conv2_b))
pool2 = max_pool_4x4(relu2)
pool_shape = pool2.get_shape().as_list()
nodes = pool_shape[1] * pool_shape[2] * pool_shape[3]
reshaped = tf.reshape(pool2, [pool_shape[0], nodes])
fc1_w = get_weight([nodes, FC_SIZE], regularizer)
fc1_b = get_bias([FC_SIZE])
fc1 = tf.nn.relu(tf.matmul(reshaped, fc1_w) + fc1_b)
if train: fc1 = tf.nn.dropout(fc1, 0.5)
fc2_w = get_weight([FC_SIZE, OUTPUT_NODE], regularizer)
fc2_b = get_bias([OUTPUT_NODE])
y = tf.matmul(fc1, fc2_w) + fc2_b
return y
# 作者:丹成學(xué)長 Q746876041, 需要完整代碼聯(lián)系學(xué)長獲取
import tensorflow as tf
import numpy as np
import gesture_forward
import gesture_backward
from image_processing import func5,func6
import cv2
def restore_model(testPicArr):
with tf.Graph().as_default() as tg:
x = tf.placeholder(tf.float32,[
1,
gesture_forward.IMAGE_SIZE,
gesture_forward.IMAGE_SIZE,
gesture_forward.NUM_CHANNELS])
#y_ = tf.placeholder(tf.float32, [None, mnist_lenet5_forward.OUTPUT_NODE])
y = gesture_forward.forward(x,False,None)
preValue = tf.argmax(y, 1)
variable_averages = tf.train.ExponentialMovingAverage(gesture_backward.MOVING_AVERAGE_DECAY)
variables_to_restore = variable_averages.variables_to_restore()
saver = tf.train.Saver(variables_to_restore)
with tf.Session() as sess:
ckpt = tf.train.get_checkpoint_state(gesture_backward.MODEL_SAVE_PATH)
if ckpt and ckpt.model_checkpoint_path:
saver.restore(sess, ckpt.model_checkpoint_path)
#global_step = ckpt.model_checkpoint_path.split('/')[-1].split('-')[-1]
preValue = sess.run(preValue, feed_dict={x:testPicArr})
return preValue
else:
print("No checkpoint file found")
return -1
def application01():
testNum = input("input the number of test pictures:")
testNum = int(testNum)
for i in range(testNum):
testPic = input("the path of test picture:")
img = func5(testPic)
cv2.imwrite(str(i)+'ttt.jpg',img)
# cv2.waitKey(0)
# cv2.destroyAllWindows()
img = img.reshape([1,100,100,1])
img = img.astype(np.float32)
img = np.multiply(img, 1.0/255.0)
# print(img.shape)
# print(type(img))
preValue = restore_model(img)
print ("The prediction number is:", preValue)
def application02():
#vc = cv2.VideoCapture('testVideo.mp4')
vc = cv2.VideoCapture(0)
# 設(shè)置每秒傳輸幀數(shù)
fps = vc.get(cv2.CAP_PROP_FPS)
# 獲取視頻的大小
size = (int(vc.get(cv2.CAP_PROP_FRAME_WIDTH)),int(vc.get(cv2.CAP_PROP_FRAME_HEIGHT)))
# 生成一個(gè)空的視頻文件
# 視頻編碼類型
# cv2.VideoWriter_fourcc('X','V','I','D') MPEG-4 編碼類型
# cv2.VideoWriter_fourcc('I','4','2','0') YUY編碼類型
# cv2.VideoWriter_fourcc('P','I','M','I') MPEG-1 編碼類型
# cv2.VideoWriter_fourcc('T','H','E','O') Ogg Vorbis類型,文件名為.ogv
# cv2.VideoWriter_fourcc('F','L','V','1') Flask視頻,文件名為.flv
#vw = cv2.VideoWriter('ges_pro.avi',cv2.VideoWriter_fourcc('X','V','I','D'), fps, size)
# 讀取視頻第一幀的內(nèi)容
success, frame = vc.read()
# rows = frame.shape[0]
# cols = frame.shape[1]
# t1 = int((cols-rows)/2)
# t2 = int(cols-t1)
# M = cv2.getRotationMatrix2D((cols/2,rows/2),90,1)
# frame = cv2.warpAffine(frame,M,(cols,rows))
# frame = frame[0:rows, t1:t2]
# cv2.imshow('sd',frame)
# cv2.waitKey(0)
# cv2.destroyAllWindows()
while success:
#90度旋轉(zhuǎn)
# img = cv2.warpAffine(frame,M,(cols,rows))
# img = img[0:rows, t1:t2]
img = func6(frame)
img = img.reshape([1,100,100,1])
img = img.astype(np.float32)
img = np.multiply(img, 1.0/255.0)
preValue = restore_model(img)
# 寫入視頻
cv2.putText(frame,"Gesture:"+str(preValue),(50,50),cv2.FONT_HERSHEY_PLAIN,2.0,(0,0,255),1)
#vw.write(frame)
cv2.imshow('gesture',frame)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
# 讀取視頻下一幀的內(nèi)容
success, frame = vc.read()
vc.release()
cv2.destroyAllWindows()
print('viedo app over!')
def main():
#application01()
application02()
if __name__ == '__main__':
main()
4 實(shí)現(xiàn)手勢(shì)交互
我們還可以通過手勢(shì)檢測和識(shí)別,實(shí)現(xiàn)軟件交互,學(xué)長錄了一個(gè)視頻,效果如下:
以上就是Python機(jī)器視覺之基于OpenCV的手勢(shì)檢測的詳細(xì)內(nèi)容,更多關(guān)于Python OpenCV手勢(shì)檢測的資料請(qǐng)關(guān)注腳本之家其它相關(guān)文章!
相關(guān)文章
解決python subprocess參數(shù)shell=True踩到的坑
這篇文章主要介紹了解決python subprocess參數(shù)shell=True踩到的坑,具有很好的參考價(jià)值,希望對(duì)大家有所幫助。一起跟隨小編過來看看吧2021-04-04
aws 通過boto3 python腳本打pach的實(shí)現(xiàn)方法
這篇文章主要介紹了aws 通過boto3 python腳本打pach的實(shí)現(xiàn)方法,本文通過實(shí)例代碼給大家介紹的非常詳細(xì),對(duì)大家的學(xué)習(xí)或工作具有一定的參考借鑒價(jià)值,需要的朋友可以參考下2020-05-05
python實(shí)現(xiàn)隨機(jī)密碼字典生成器示例
這篇文章主要介紹了python實(shí)現(xiàn)隨機(jī)密碼字典生成器示例,需要的朋友可以參考下2014-04-04
使用Python webdriver圖書館搶座自動(dòng)預(yù)約的正確方法
這篇文章主要介紹了使用Python webdriver圖書館搶座自動(dòng)預(yù)約的正確方法,本文通過圖文實(shí)例相結(jié)合給大家介紹的非常詳細(xì),對(duì)大家的學(xué)習(xí)或工作具有一定的參考借鑒價(jià)值,需要的朋友可以參考下2021-03-03
Python和Matlab實(shí)現(xiàn)蝙蝠算法的示例代碼
蝙蝠算法是一種搜索全局最優(yōu)解的有效方法,本文主要介紹了Python和Matlab實(shí)現(xiàn)蝙蝠算法的示例代碼,文中通過示例代碼介紹的非常詳細(xì),具有一定的參考價(jià)值,感興趣的小伙伴們可以參考一下2022-03-03
趣味Python實(shí)戰(zhàn)練習(xí)之自動(dòng)更換桌面壁紙腳本附源碼
讀萬卷書不如行萬里路,學(xué)的扎不扎實(shí)要通過實(shí)戰(zhàn)才能看出來,本篇文章手把手帶你編寫一個(gè)自動(dòng)更換桌面壁紙的腳本,代碼簡潔而且短,相信你一定看得懂,大家可以在過程中查缺補(bǔ)漏,看看自己掌握程度怎么樣2021-10-10
Python+Pillow+Pytesseract實(shí)現(xiàn)驗(yàn)證碼識(shí)別
這篇文章主要為大家詳細(xì)介紹了如何利用pillow和pytesseract來實(shí)現(xiàn)驗(yàn)證碼的識(shí)別,文中的示例代碼講解詳細(xì),感興趣的小伙伴可以了解一下2022-05-05

