使用?OpenCV-Python?識(shí)別答題卡判卷功能
任務(wù)
識(shí)別用相機(jī)拍下來(lái)的答題卡,并判斷最終得分(假設(shè)正確答案是B, E, A, D, B)

主要步驟
- 輪廓識(shí)別——答題卡邊緣識(shí)別
- 透視變換——提取答題卡主體
- 輪廓識(shí)別——識(shí)別出所有圓形選項(xiàng),剔除無(wú)關(guān)輪廓
- 檢測(cè)每一行選擇的是哪一項(xiàng),并將結(jié)果儲(chǔ)存起來(lái),記錄正確的個(gè)數(shù)
- 計(jì)算最終得分并在圖中標(biāo)注
分步實(shí)現(xiàn)
輪廓識(shí)別——答題卡邊緣識(shí)別
輸入圖像
import cv2 as cv
import numpy as np
# 正確答案
right_key = {0: 1, 1: 4, 2: 0, 3: 3, 4: 1}
# 輸入圖像
img = cv.imread('./images/test_01.jpg')
img_copy = img.copy()
img_gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY)
cvshow('img-gray', img_gray)

圖像預(yù)處理
# 圖像預(yù)處理
# 高斯降噪
img_gaussian = cv.GaussianBlur(img_gray, (5, 5), 1)
cvshow('gaussianblur', img_gaussian)
# canny邊緣檢測(cè)
img_canny = cv.Canny(img_gaussian, 80, 150)
cvshow('canny', img_canny)
?
?
輪廓識(shí)別——答題卡邊緣識(shí)別
# 輪廓識(shí)別——答題卡邊緣識(shí)別
cnts, hierarchy = cv.findContours(img_canny, cv.RETR_EXTERNAL, cv.CHAIN_APPROX_SIMPLE)
cv.drawContours(img_copy, cnts, -1, (0, 0, 255), 3)
cvshow('contours-show', img_copy)

透視變換——提取答題卡主體
對(duì)每個(gè)輪廓進(jìn)行擬合,將多邊形輪廓變?yōu)樗倪呅?/p>
docCnt = None
# 確保檢測(cè)到了
if len(cnts) > 0:
# 根據(jù)輪廓大小進(jìn)行排序
cnts = sorted(cnts, key=cv.contourArea, reverse=True)
# 遍歷每一個(gè)輪廓
for c in cnts:
# 近似
peri = cv.arcLength(c, True)
# arclength 計(jì)算一段曲線的長(zhǎng)度或者閉合曲線的周長(zhǎng);
# 第一個(gè)參數(shù)輸入一個(gè)二維向量,第二個(gè)參數(shù)表示計(jì)算曲線是否閉合
approx = cv.approxPolyDP(c, 0.02 * peri, True)
# 用一條頂點(diǎn)較少的曲線/多邊形來(lái)近似曲線/多邊形,以使它們之間的距離<=指定的精度;
# c是需要近似的曲線,0.02*peri是精度的最大值,True表示曲線是閉合的
# 準(zhǔn)備做透視變換
if len(approx) == 4:
docCnt = approx
break
透視變換——提取答題卡主體
# 透視變換——提取答題卡主體
docCnt = docCnt.reshape(4, 2)
warped = four_point_transform(img_gray, docCnt)
cvshow('warped', warped)
def four_point_transform(img, four_points):
rect = order_points(four_points)
(tl, tr, br, bl) = rect
# 計(jì)算輸入的w和h的值
widthA = np.sqrt((tr[0] - tl[0]) ** 2 + (tr[1] - tl[1]) ** 2)
widthB = np.sqrt((br[0] - bl[0]) ** 2 + (br[1] - bl[1]) ** 2)
maxWidth = max(int(widthA), int(widthB))
heightA = np.sqrt((tl[0] - bl[0]) ** 2 + (tl[1] - bl[1]) ** 2)
heightB = np.sqrt((tr[0] - br[0]) ** 2 + (tr[1] - br[1]) ** 2)
maxHeight = max(int(heightA), int(heightB))
# 變換后對(duì)應(yīng)的坐標(biāo)位置
dst = np.array([
[0, 0],
[maxWidth - 1, 0],
[maxWidth - 1, maxHeight - 1],
[0, maxHeight - 1]], dtype='float32')
# 最主要的函數(shù)就是 cv2.getPerspectiveTransform(rect, dst) 和 cv2.warpPerspective(image, M, (maxWidth, maxHeight))
M = cv.getPerspectiveTransform(rect, dst)
warped = cv.warpPerspective(img, M, (maxWidth, maxHeight))
return warped
def order_points(points):
res = np.zeros((4, 2), dtype='float32')
# 按照從前往后0,1,2,3分別表示左上、右上、右下、左下的順序?qū)oints中的數(shù)填入res中
# 將四個(gè)坐標(biāo)x與y相加,和最大的那個(gè)是右下角的坐標(biāo),最小的那個(gè)是左上角的坐標(biāo)
sum_hang = points.sum(axis=1)
res[0] = points[np.argmin(sum_hang)]
res[2] = points[np.argmax(sum_hang)]
# 計(jì)算坐標(biāo)x與y的離散插值np.diff()
diff = np.diff(points, axis=1)
res[1] = points[np.argmin(diff)]
res[3] = points[np.argmax(diff)]
# 返回result
return res

輪廓識(shí)別——識(shí)別出選項(xiàng)
# 輪廓識(shí)別——識(shí)別出選項(xiàng)
thresh = cv.threshold(warped, 0, 255, cv.THRESH_BINARY_INV | cv.THRESH_OTSU)[1]
cvshow('thresh', thresh)
thresh_cnts, _ = cv.findContours(thresh, cv.RETR_EXTERNAL, cv.CHAIN_APPROX_SIMPLE)
w_copy = warped.copy()
cv.drawContours(w_copy, thresh_cnts, -1, (0, 0, 255), 2)
cvshow('warped_contours', w_copy)
questionCnts = []
# 遍歷,挑出選項(xiàng)的cnts
for c in thresh_cnts:
(x, y, w, h) = cv.boundingRect(c)
ar = w / float(h)
# 根據(jù)實(shí)際情況指定標(biāo)準(zhǔn)
if w >= 20 and h >= 20 and ar >= 0.9 and ar <= 1.1:
questionCnts.append(c)
# 檢查是否挑出了選項(xiàng)
w_copy2 = warped.copy()
cv.drawContours(w_copy2, questionCnts, -1, (0, 0, 255), 2)
cvshow('questionCnts', w_copy2)



成功將無(wú)關(guān)輪廓剔除
檢測(cè)每一行選擇的是哪一項(xiàng),并將結(jié)果儲(chǔ)存起來(lái),記錄正確的個(gè)數(shù)
# 檢測(cè)每一行選擇的是哪一項(xiàng),并將結(jié)果儲(chǔ)存在元組bubble中,記錄正確的個(gè)數(shù)correct
# 按照從上到下t2b對(duì)輪廓進(jìn)行排序
questionCnts = sort_contours(questionCnts, method="t2b")[0]
correct = 0
# 每行有5個(gè)選項(xiàng)
for (i, q) in enumerate(np.arange(0, len(questionCnts), 5)):
# 排序
cnts = sort_contours(questionCnts[q:q+5])[0]
bubble = None
# 得到每一個(gè)選項(xiàng)的mask并填充,與正確答案進(jìn)行按位與操作獲得重合點(diǎn)數(shù)
for (j, c) in enumerate(cnts):
mask = np.zeros(thresh.shape, dtype='uint8')
cv.drawContours(mask, [c], -1, 255, -1)
# cvshow('mask', mask)
# 通過按位與操作得到thresh與mask重合部分的像素?cái)?shù)量
bitand = cv.bitwise_and(thresh, thresh, mask=mask)
totalPixel = cv.countNonZero(bitand)
if bubble is None or bubble[0] < totalPixel:
bubble = (totalPixel, j)
k = bubble[1]
color = (0, 0, 255)
if k == right_key[i]:
correct += 1
color = (0, 255, 0)
# 繪圖
cv.drawContours(warped, [cnts[right_key[i]]], -1, color, 3)
cvshow('final', warped)
def sort_contours(contours, method="l2r"):
# 用于給輪廓排序,l2r, r2l, t2b, b2t
reverse = False
i = 0
if method == "r2l" or method == "b2t":
reverse = True
if method == "t2b" or method == "b2t":
i = 1
boundingBoxes = [cv.boundingRect(c) for c in contours]
(contours, boundingBoxes) = zip(*sorted(zip(contours, boundingBoxes), key=lambda a: a[1][i], reverse=reverse))
return contours, boundingBoxes
?
用透過mask的像素的個(gè)數(shù)來(lái)判斷考生選擇的是哪個(gè)選項(xiàng)

計(jì)算最終得分并在圖中標(biāo)注
# 計(jì)算最終得分并在圖中標(biāo)注
score = (correct / 5.0) * 100
print(f"Score: {score}%")
cv.putText(warped, f"Score: {score}%", (10, 30), cv.FONT_HERSHEY_SIMPLEX, 0.9, (0, 0, 255), 2)
cv.imshow("Original", img)
cv.imshow("Exam", warped)
cv.waitKey(0)

完整代碼
import cv2 as cv
import numpy as np
def cvshow(name, img):
cv.imshow(name, img)
cv.waitKey(0)
cv.destroyAllWindows()
def four_point_transform(img, four_points):
rect = order_points(four_points)
(tl, tr, br, bl) = rect
# 計(jì)算輸入的w和h的值
widthA = np.sqrt((tr[0] - tl[0]) ** 2 + (tr[1] - tl[1]) ** 2)
widthB = np.sqrt((br[0] - bl[0]) ** 2 + (br[1] - bl[1]) ** 2)
maxWidth = max(int(widthA), int(widthB))
heightA = np.sqrt((tl[0] - bl[0]) ** 2 + (tl[1] - bl[1]) ** 2)
heightB = np.sqrt((tr[0] - br[0]) ** 2 + (tr[1] - br[1]) ** 2)
maxHeight = max(int(heightA), int(heightB))
# 變換后對(duì)應(yīng)的坐標(biāo)位置
dst = np.array([
[0, 0],
[maxWidth - 1, 0],
[maxWidth - 1, maxHeight - 1],
[0, maxHeight - 1]], dtype='float32')
# 最主要的函數(shù)就是 cv2.getPerspectiveTransform(rect, dst) 和 cv2.warpPerspective(image, M, (maxWidth, maxHeight))
M = cv.getPerspectiveTransform(rect, dst)
warped = cv.warpPerspective(img, M, (maxWidth, maxHeight))
return warped
def order_points(points):
res = np.zeros((4, 2), dtype='float32')
# 按照從前往后0,1,2,3分別表示左上、右上、右下、左下的順序?qū)oints中的數(shù)填入res中
# 將四個(gè)坐標(biāo)x與y相加,和最大的那個(gè)是右下角的坐標(biāo),最小的那個(gè)是左上角的坐標(biāo)
sum_hang = points.sum(axis=1)
res[0] = points[np.argmin(sum_hang)]
res[2] = points[np.argmax(sum_hang)]
# 計(jì)算坐標(biāo)x與y的離散插值np.diff()
diff = np.diff(points, axis=1)
res[1] = points[np.argmin(diff)]
res[3] = points[np.argmax(diff)]
# 返回result
return res
def sort_contours(contours, method="l2r"):
# 用于給輪廓排序,l2r, r2l, t2b, b2t
reverse = False
i = 0
if method == "r2l" or method == "b2t":
reverse = True
if method == "t2b" or method == "b2t":
i = 1
boundingBoxes = [cv.boundingRect(c) for c in contours]
(contours, boundingBoxes) = zip(*sorted(zip(contours, boundingBoxes), key=lambda a: a[1][i], reverse=reverse))
return contours, boundingBoxes
# 正確答案
right_key = {0: 1, 1: 4, 2: 0, 3: 3, 4: 1}
# 輸入圖像
img = cv.imread('./images/test_01.jpg')
img_copy = img.copy()
img_gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY)
cvshow('img-gray', img_gray)
# 圖像預(yù)處理
# 高斯降噪
img_gaussian = cv.GaussianBlur(img_gray, (5, 5), 1)
cvshow('gaussianblur', img_gaussian)
# canny邊緣檢測(cè)
img_canny = cv.Canny(img_gaussian, 80, 150)
cvshow('canny', img_canny)
# 輪廓識(shí)別——答題卡邊緣識(shí)別
cnts, hierarchy = cv.findContours(img_canny, cv.RETR_EXTERNAL, cv.CHAIN_APPROX_SIMPLE)
cv.drawContours(img_copy, cnts, -1, (0, 0, 255), 3)
cvshow('contours-show', img_copy)
docCnt = None
# 確保檢測(cè)到了
if len(cnts) > 0:
# 根據(jù)輪廓大小進(jìn)行排序
cnts = sorted(cnts, key=cv.contourArea, reverse=True)
# 遍歷每一個(gè)輪廓
for c in cnts:
# 近似
peri = cv.arcLength(c, True) # arclength 計(jì)算一段曲線的長(zhǎng)度或者閉合曲線的周長(zhǎng);
# 第一個(gè)參數(shù)輸入一個(gè)二維向量,第二個(gè)參數(shù)表示計(jì)算曲線是否閉合
approx = cv.approxPolyDP(c, 0.02 * peri, True)
# 用一條頂點(diǎn)較少的曲線/多邊形來(lái)近似曲線/多邊形,以使它們之間的距離<=指定的精度;
# c是需要近似的曲線,0.02*peri是精度的最大值,True表示曲線是閉合的
# 準(zhǔn)備做透視變換
if len(approx) == 4:
docCnt = approx
break
# 透視變換——提取答題卡主體
docCnt = docCnt.reshape(4, 2)
warped = four_point_transform(img_gray, docCnt)
cvshow('warped', warped)
# 輪廓識(shí)別——識(shí)別出選項(xiàng)
thresh = cv.threshold(warped, 0, 255, cv.THRESH_BINARY_INV | cv.THRESH_OTSU)[1]
cvshow('thresh', thresh)
thresh_cnts, _ = cv.findContours(thresh, cv.RETR_EXTERNAL, cv.CHAIN_APPROX_SIMPLE)
w_copy = warped.copy()
cv.drawContours(w_copy, thresh_cnts, -1, (0, 0, 255), 2)
cvshow('warped_contours', w_copy)
questionCnts = []
# 遍歷,挑出選項(xiàng)的cnts
for c in thresh_cnts:
(x, y, w, h) = cv.boundingRect(c)
ar = w / float(h)
# 根據(jù)實(shí)際情況指定標(biāo)準(zhǔn)
if w >= 20 and h >= 20 and ar >= 0.9 and ar <= 1.1:
questionCnts.append(c)
# 檢查是否挑出了選項(xiàng)
w_copy2 = warped.copy()
cv.drawContours(w_copy2, questionCnts, -1, (0, 0, 255), 2)
cvshow('questionCnts', w_copy2)
# 檢測(cè)每一行選擇的是哪一項(xiàng),并將結(jié)果儲(chǔ)存在元組bubble中,記錄正確的個(gè)數(shù)correct
# 按照從上到下t2b對(duì)輪廓進(jìn)行排序
questionCnts = sort_contours(questionCnts, method="t2b")[0]
correct = 0
# 每行有5個(gè)選項(xiàng)
for (i, q) in enumerate(np.arange(0, len(questionCnts), 5)):
# 排序
cnts = sort_contours(questionCnts[q:q+5])[0]
bubble = None
# 得到每一個(gè)選項(xiàng)的mask并填充,與正確答案進(jìn)行按位與操作獲得重合點(diǎn)數(shù)
for (j, c) in enumerate(cnts):
mask = np.zeros(thresh.shape, dtype='uint8')
cv.drawContours(mask, [c], -1, 255, -1)
cvshow('mask', mask)
# 通過按位與操作得到thresh與mask重合部分的像素?cái)?shù)量
bitand = cv.bitwise_and(thresh, thresh, mask=mask)
totalPixel = cv.countNonZero(bitand)
if bubble is None or bubble[0] < totalPixel:
bubble = (totalPixel, j)
k = bubble[1]
color = (0, 0, 255)
if k == right_key[i]:
correct += 1
color = (0, 255, 0)
# 繪圖
cv.drawContours(warped, [cnts[right_key[i]]], -1, color, 3)
cvshow('final', warped)
# 計(jì)算最終得分并在圖中標(biāo)注
score = (correct / 5.0) * 100
print(f"Score: {score}%")
cv.putText(warped, f"Score: {score}%", (10, 30), cv.FONT_HERSHEY_SIMPLEX, 0.9, (0, 0, 255), 2)
cv.imshow("Original", img)
cv.imshow("Exam", warped)
cv.waitKey(0)
到此這篇關(guān)于使用?OpenCV-Python?識(shí)別答題卡判卷的文章就介紹到這了,更多相關(guān)OpenCV?Python?識(shí)別答題卡判卷內(nèi)容請(qǐng)搜索腳本之家以前的文章或繼續(xù)瀏覽下面的相關(guān)文章希望大家以后多多支持腳本之家!
相關(guān)文章
Python數(shù)據(jù)處理pandas讀寫操作IO工具CSV解析
這篇文章主要為大家介紹了Python?pandas數(shù)據(jù)讀寫操作IO工具之CSV使用示例詳解,有需要的朋友可以借鑒參考下,希望能夠有所幫助,祝大家多多進(jìn)步,早日升職加薪2022-06-06
簡(jiǎn)單談?wù)凱ython中的json與pickle
下面小編就為大家?guī)?lái)一篇簡(jiǎn)單談?wù)凱ython中的json與pickle。小編覺得挺不錯(cuò)的,現(xiàn)在就分享給大家,也給大家做個(gè)參考。一起跟隨小編過來(lái)看看吧2017-07-07
python學(xué)習(xí)之SpaCy庫(kù)的高級(jí)特性詳解
在之前的文章中,我們介紹了SpaCy庫(kù)的一些基本概念和功能,在這篇文章中,我們將深入學(xué)習(xí)一些更高級(jí)的特性,包括詞向量、依賴性解析、和自定義組件2023-07-07
Python wxPython庫(kù)使用wx.ListBox創(chuàng)建列表框示例
這篇文章主要介紹了Python wxPython庫(kù)使用wx.ListBox創(chuàng)建列表框,結(jié)合實(shí)例形式分析了wxPython庫(kù)使用wx.ListBox創(chuàng)建列表框的簡(jiǎn)單實(shí)現(xiàn)方法及ListBox函數(shù)相關(guān)選項(xiàng)的功能,需要的朋友可以參考下2018-09-09
淺談Django自定義模板標(biāo)簽template_tags的用處
這篇文章主要介紹了淺談Django自定義模板標(biāo)簽template_tags的用處,具有一定借鑒價(jià)值,需要的朋友可以參考下。2017-12-12
詳解python項(xiàng)目實(shí)戰(zhàn):模擬登陸CSDN
這篇文章主要介紹了python項(xiàng)目實(shí)戰(zhàn):模擬登陸CSDN,文中通過示例代碼介紹的非常詳細(xì),對(duì)大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價(jià)值,需要的朋友們下面隨著小編來(lái)一起學(xué)習(xí)學(xué)習(xí)吧2019-04-04
python爬蟲 正則表達(dá)式使用技巧及爬取個(gè)人博客的實(shí)例講解
下面小編就為大家?guī)?lái)一篇python爬蟲 正則表達(dá)式使用技巧及爬取個(gè)人博客的實(shí)例講解。小編覺得挺不錯(cuò)的,現(xiàn)在就分享給大家,也給大家做個(gè)參考。一起跟隨小編過來(lái)看看吧2017-10-10

