Python人臉識別之微笑檢測
一.實驗準備
環(huán)境搭建
pip install tensorflow==1.2.0 pip install keras==2.0.6 pip install dlib==19.6.1 pip install h5py==2.10
如果是新建虛擬環(huán)境,還需安裝以下包
pip install opencv_python==4.1.2.30 pip install pillow pip install matplotlib pip install h5py
使用genki-4k數(shù)據(jù)集
可從此處下載
二.圖片預(yù)處理
打開數(shù)據(jù)集

我們需要將人臉檢測出來并對圖片進行裁剪
代碼如下:
import dlib # 人臉識別的庫dlib
import numpy as np # 數(shù)據(jù)處理的庫numpy
import cv2 # 圖像處理的庫OpenCv
import os
# dlib預(yù)測器
detector = dlib.get_frontal_face_detector()
predictor = dlib.shape_predictor('D:\\shape_predictor_68_face_landmarks.dat')
# 讀取圖像的路徑
path_read = "C:\\Users\\28205\\Documents\\Tencent Files\\2820535964\\FileRecv\\genki4k\\files"
num=0
for file_name in os.listdir(path_read):
#aa是圖片的全路徑
aa=(path_read +"/"+file_name)
#讀入的圖片的路徑中含非英文
img=cv2.imdecode(np.fromfile(aa, dtype=np.uint8), cv2.IMREAD_UNCHANGED)
#獲取圖片的寬高
img_shape=img.shape
img_height=img_shape[0]
img_width=img_shape[1]
# 用來存儲生成的單張人臉的路徑
path_save="C:\\Users\\28205\\Documents\\Tencent Files\\2820535964\\FileRecv\\genki4k\\files1"
# dlib檢測
dets = detector(img,1)
print("人臉數(shù):", len(dets))
for k, d in enumerate(dets):
if len(dets)>1:
continue
num=num+1
# 計算矩形大小
# (x,y), (寬度width, 高度height)
pos_start = tuple([d.left(), d.top()])
pos_end = tuple([d.right(), d.bottom()])
# 計算矩形框大小
height = d.bottom()-d.top()
width = d.right()-d.left()
# 根據(jù)人臉大小生成空的圖像
img_blank = np.zeros((height, width, 3), np.uint8)
for i in range(height):
if d.top()+i>=img_height:# 防止越界
continue
for j in range(width):
if d.left()+j>=img_width:# 防止越界
continue
img_blank[i][j] = img[d.top()+i][d.left()+j]
img_blank = cv2.resize(img_blank, (200, 200), interpolation=cv2.INTER_CUBIC)
cv2.imencode('.jpg', img_blank)[1].tofile(path_save+"\\"+"file"+str(num)+".jpg") # 正確方法
運行效果如下:

共識別出3878張圖片。
某些圖片沒有識別出人臉,所以沒有裁剪保存,可以自行添加圖片補充。
三.劃分數(shù)據(jù)集
代碼:
import os, shutil
# 原始數(shù)據(jù)集路徑
original_dataset_dir = 'C:\\Users\\28205\\Documents\\Tencent Files\\2820535964\\FileRecv\\genki4k\\files1'
# 新的數(shù)據(jù)集
base_dir = 'C:\\Users\\28205\\Documents\\Tencent Files\\2820535964\\FileRecv\\genki4k\\files2'
os.mkdir(base_dir)
# 訓練圖像、驗證圖像、測試圖像的目錄
train_dir = os.path.join(base_dir, 'train')
os.mkdir(train_dir)
validation_dir = os.path.join(base_dir, 'validation')
os.mkdir(validation_dir)
test_dir = os.path.join(base_dir, 'test')
os.mkdir(test_dir)
train_cats_dir = os.path.join(train_dir, 'smile')
os.mkdir(train_cats_dir)
train_dogs_dir = os.path.join(train_dir, 'unsmile')
os.mkdir(train_dogs_dir)
validation_cats_dir = os.path.join(validation_dir, 'smile')
os.mkdir(validation_cats_dir)
validation_dogs_dir = os.path.join(validation_dir, 'unsmile')
os.mkdir(validation_dogs_dir)
test_cats_dir = os.path.join(test_dir, 'smile')
os.mkdir(test_cats_dir)
test_dogs_dir = os.path.join(test_dir, 'unsmile')
os.mkdir(test_dogs_dir)
# 復(fù)制1000張笑臉圖片到train_c_dir
fnames = ['file{}.jpg'.format(i) for i in range(1,900)]
for fname in fnames:
src = os.path.join(original_dataset_dir, fname)
dst = os.path.join(train_cats_dir, fname)
shutil.copyfile(src, dst)
fnames = ['file{}.jpg'.format(i) for i in range(900, 1350)]
for fname in fnames:
src = os.path.join(original_dataset_dir, fname)
dst = os.path.join(validation_cats_dir, fname)
shutil.copyfile(src, dst)
# Copy next 500 cat images to test_cats_dir
fnames = ['file{}.jpg'.format(i) for i in range(1350, 1800)]
for fname in fnames:
src = os.path.join(original_dataset_dir, fname)
dst = os.path.join(test_cats_dir, fname)
shutil.copyfile(src, dst)
fnames = ['file{}.jpg'.format(i) for i in range(2127,3000)]
for fname in fnames:
src = os.path.join(original_dataset_dir, fname)
dst = os.path.join(train_dogs_dir, fname)
shutil.copyfile(src, dst)
# Copy next 500 dog images to validation_dogs_dir
fnames = ['file{}.jpg'.format(i) for i in range(3000,3878)]
for fname in fnames:
src = os.path.join(original_dataset_dir, fname)
dst = os.path.join(validation_dogs_dir, fname)
shutil.copyfile(src, dst)
# Copy next 500 dog images to test_dogs_dir
fnames = ['file{}.jpg'.format(i) for i in range(3000,3878)]
for fname in fnames:
src = os.path.join(original_dataset_dir, fname)
dst = os.path.join(test_dogs_dir, fname)
shutil.copyfile(src, dst)
運行效果如下:

四.CNN提取人臉識別笑臉和非笑臉
1.創(chuàng)建模型
代碼:
#創(chuàng)建模型 from keras import layers from keras import models model = models.Sequential() model.add(layers.Conv2D(32, (3, 3), activation='relu',input_shape=(150, 150, 3))) model.add(layers.MaxPooling2D((2, 2))) model.add(layers.Conv2D(64, (3, 3), activation='relu')) model.add(layers.MaxPooling2D((2, 2))) model.add(layers.Conv2D(128, (3, 3), activation='relu')) model.add(layers.MaxPooling2D((2, 2))) model.add(layers.Conv2D(128, (3, 3), activation='relu')) model.add(layers.MaxPooling2D((2, 2))) model.add(layers.Flatten()) model.add(layers.Dense(512, activation='relu')) model.add(layers.Dense(1, activation='sigmoid')) model.summary()#查看
運行效果:

2.歸一化處理
代碼:
#歸一化
from keras import optimizers
model.compile(loss='binary_crossentropy',
optimizer=optimizers.RMSprop(lr=1e-4),
metrics=['acc'])
from keras.preprocessing.image import ImageDataGenerator
train_datagen = ImageDataGenerator(rescale=1./255)
validation_datagen=ImageDataGenerator(rescale=1./255)
test_datagen = ImageDataGenerator(rescale=1./255)
train_generator = train_datagen.flow_from_directory(
# 目標文件目錄
train_dir,
#所有圖片的size必須是150x150
target_size=(150, 150),
batch_size=20,
# Since we use binary_crossentropy loss, we need binary labels
class_mode='binary')
validation_generator = test_datagen.flow_from_directory(
validation_dir,
target_size=(150, 150),
batch_size=20,
class_mode='binary')
test_generator = test_datagen.flow_from_directory(test_dir,
target_size=(150, 150),
batch_size=20,
class_mode='binary')
for data_batch, labels_batch in train_generator:
print('data batch shape:', data_batch.shape)
print('labels batch shape:', labels_batch)
break
#'smile': 0, 'unsmile': 1
3.數(shù)據(jù)增強
代碼:
#數(shù)據(jù)增強
datagen = ImageDataGenerator(
rotation_range=40,
width_shift_range=0.2,
height_shift_range=0.2,
shear_range=0.2,
zoom_range=0.2,
horizontal_flip=True,
fill_mode='nearest')
#數(shù)據(jù)增強后圖片變化
import matplotlib.pyplot as plt
# This is module with image preprocessing utilities
from keras.preprocessing import image
fnames = [os.path.join(train_smile_dir, fname) for fname in os.listdir(train_smile_dir)]
img_path = fnames[3]
img = image.load_img(img_path, target_size=(150, 150))
x = image.img_to_array(img)
x = x.reshape((1,) + x.shape)
i = 0
for batch in datagen.flow(x, batch_size=1):
plt.figure(i)
imgplot = plt.imshow(image.array_to_img(batch[0]))
i += 1
if i % 4 == 0:
break
plt.show()
運行效果:

4.創(chuàng)建網(wǎng)絡(luò)
代碼:
#創(chuàng)建網(wǎng)絡(luò)
model = models.Sequential()
model.add(layers.Conv2D(32, (3, 3), activation='relu',input_shape=(150, 150, 3)))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(128, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(128, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Flatten())
model.add(layers.Dropout(0.5))
model.add(layers.Dense(512, activation='relu'))
model.add(layers.Dense(1, activation='sigmoid'))
model.compile(loss='binary_crossentropy',
optimizer=optimizers.RMSprop(lr=1e-4),
metrics=['acc'])
#歸一化處理
train_datagen = ImageDataGenerator(
rescale=1./255,
rotation_range=40,
width_shift_range=0.2,
height_shift_range=0.2,
shear_range=0.2,
zoom_range=0.2,
horizontal_flip=True,)
test_datagen = ImageDataGenerator(rescale=1./255)
train_generator = train_datagen.flow_from_directory(
# This is the target directory
train_dir,
# All images will be resized to 150x150
target_size=(150, 150),
batch_size=32,
# Since we use binary_crossentropy loss, we need binary labels
class_mode='binary')
validation_generator = test_datagen.flow_from_directory(
validation_dir,
target_size=(150, 150),
batch_size=32,
class_mode='binary')
history = model.fit_generator(
train_generator,
steps_per_epoch=100,
epochs=60,
validation_data=validation_generator,
validation_steps=50)
model.save('smileAndUnsmile1.h5')
#數(shù)據(jù)增強過后的訓練集與驗證集的精確度與損失度的圖形
acc = history.history['acc']
val_acc = history.history['val_acc']
loss = history.history['loss']
val_loss = history.history['val_loss']
epochs = range(len(acc))
plt.plot(epochs, acc, 'bo', label='Training acc')
plt.plot(epochs, val_acc, 'b', label='Validation acc')
plt.title('Training and validation accuracy')
plt.legend()
plt.figure()
plt.plot(epochs, loss, 'bo', label='Training loss')
plt.plot(epochs, val_loss, 'b', label='Validation loss')
plt.title('Training and validation loss')
plt.legend()
plt.show()
運行結(jié)果:
速度較慢,要等很久


5.單張圖片測試
代碼:
# 單張圖片進行判斷 是笑臉還是非笑臉
import cv2
from keras.preprocessing import image
from keras.models import load_model
import numpy as np
#加載模型
model = load_model('smileAndUnsmile1.h5')
#本地圖片路徑
img_path='test.jpg'
img = image.load_img(img_path, target_size=(150, 150))
img_tensor = image.img_to_array(img)/255.0
img_tensor = np.expand_dims(img_tensor, axis=0)
prediction =model.predict(img_tensor)
print(prediction)
if prediction[0][0]>0.5:
result='非笑臉'
else:
result='笑臉'
print(result)

運行結(jié)果:

6.攝像頭實時測試
代碼:
#檢測視頻或者攝像頭中的人臉
import cv2
from keras.preprocessing import image
from keras.models import load_model
import numpy as np
import dlib
from PIL import Image
model = load_model('smileAndUnsmile1.h5')
detector = dlib.get_frontal_face_detector()
video=cv2.VideoCapture(0)
font = cv2.FONT_HERSHEY_SIMPLEX
def rec(img):
gray=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
dets=detector(gray,1)
if dets is not None:
for face in dets:
left=face.left()
top=face.top()
right=face.right()
bottom=face.bottom()
cv2.rectangle(img,(left,top),(right,bottom),(0,255,0),2)
img1=cv2.resize(img[top:bottom,left:right],dsize=(150,150))
img1=cv2.cvtColor(img1,cv2.COLOR_BGR2RGB)
img1 = np.array(img1)/255.
img_tensor = img1.reshape(-1,150,150,3)
prediction =model.predict(img_tensor)
if prediction[0][0]>0.5:
result='unsmile'
else:
result='smile'
cv2.putText(img, result, (left,top), font, 2, (0, 255, 0), 2, cv2.LINE_AA)
cv2.imshow('Video', img)
while video.isOpened():
res, img_rd = video.read()
if not res:
break
rec(img_rd)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
video.release()
cv2.destroyAllWindows()
運行結(jié)果:

五.Dlib提取人臉特征識別笑臉和非笑臉
代碼:
import cv2 # 圖像處理的庫 OpenCv
import dlib # 人臉識別的庫 dlib
import numpy as np # 數(shù)據(jù)處理的庫 numpy
class face_emotion():
def __init__(self):
self.detector = dlib.get_frontal_face_detector()
self.predictor = dlib.shape_predictor("shape_predictor_68_face_landmarks.dat")
self.cap = cv2.VideoCapture(0)
self.cap.set(3, 480)
self.cnt = 0
def learning_face(self):
line_brow_x = []
line_brow_y = []
while(self.cap.isOpened()):
flag, im_rd = self.cap.read()
k = cv2.waitKey(1)
# 取灰度
img_gray = cv2.cvtColor(im_rd, cv2.COLOR_RGB2GRAY)
faces = self.detector(img_gray, 0)
font = cv2.FONT_HERSHEY_SIMPLEX
# 如果檢測到人臉
if(len(faces) != 0):
# 對每個人臉都標出68個特征點
for i in range(len(faces)):
for k, d in enumerate(faces):
cv2.rectangle(im_rd, (d.left(), d.top()), (d.right(), d.bottom()), (0,0,255))
self.face_width = d.right() - d.left()
shape = self.predictor(im_rd, d)
mouth_width = (shape.part(54).x - shape.part(48).x) / self.face_width
mouth_height = (shape.part(66).y - shape.part(62).y) / self.face_width
brow_sum = 0
frown_sum = 0
for j in range(17, 21):
brow_sum += (shape.part(j).y - d.top()) + (shape.part(j + 5).y - d.top())
frown_sum += shape.part(j + 5).x - shape.part(j).x
line_brow_x.append(shape.part(j).x)
line_brow_y.append(shape.part(j).y)
tempx = np.array(line_brow_x)
tempy = np.array(line_brow_y)
z1 = np.polyfit(tempx, tempy, 1)
self.brow_k = -round(z1[0], 3)
brow_height = (brow_sum / 10) / self.face_width # 眉毛高度占比
brow_width = (frown_sum / 5) / self.face_width # 眉毛距離占比
eye_sum = (shape.part(41).y - shape.part(37).y + shape.part(40).y - shape.part(38).y +
shape.part(47).y - shape.part(43).y + shape.part(46).y - shape.part(44).y)
eye_hight = (eye_sum / 4) / self.face_width
if round(mouth_height >= 0.03) and eye_hight<0.56:
cv2.putText(im_rd, "smile", (d.left(), d.bottom() + 20), cv2.FONT_HERSHEY_SIMPLEX, 2,
(0,255,0), 2, 4)
if round(mouth_height<0.03) and self.brow_k>-0.3:
cv2.putText(im_rd, "unsmile", (d.left(), d.bottom() + 20), cv2.FONT_HERSHEY_SIMPLEX, 2,
(0,255,0), 2, 4)
cv2.putText(im_rd, "Face-" + str(len(faces)), (20,50), font, 0.6, (0,0,255), 1, cv2.LINE_AA)
else:
cv2.putText(im_rd, "No Face", (20,50), font, 0.6, (0,0,255), 1, cv2.LINE_AA)
im_rd = cv2.putText(im_rd, "S: screenshot", (20,450), font, 0.6, (255,0,255), 1, cv2.LINE_AA)
im_rd = cv2.putText(im_rd, "Q: quit", (20,470), font, 0.6, (255,0,255), 1, cv2.LINE_AA)
if (cv2.waitKey(1) & 0xFF) == ord('s'):
self.cnt += 1
cv2.imwrite("screenshoot" + str(self.cnt) + ".jpg", im_rd)
# 按下 q 鍵退出
if (cv2.waitKey(1)) == ord('q'):
break
# 窗口顯示
cv2.imshow("Face Recognition", im_rd)
self.cap.release()
cv2.destroyAllWindows()
if __name__ == "__main__":
my_face = face_emotion()
my_face.learning_face()
運行結(jié)果:
?
以上就是Python人臉識別之微笑檢測的詳細內(nèi)容,更多關(guān)于Python 微笑檢測的資料請關(guān)注腳本之家其它相關(guān)文章!
相關(guān)文章
使用Python對mongo數(shù)據(jù)庫中字符串型正負數(shù)值比較大小
這篇文章主要介紹了使用Python對mongo數(shù)據(jù)庫中字符串型正負數(shù)值比較大小,2023-04-04
使用PyCharm調(diào)試程序?qū)崿F(xiàn)過程
這篇文章主要介紹了使用PyCharm調(diào)試程序?qū)崿F(xiàn)過程,具有很好的參考價值,希望對大家有所幫助。如有錯誤或未考慮完全的地方,望不吝賜教2022-11-11
python中ndarray數(shù)組的索引和切片的使用
本文主要介紹了python中ndarray數(shù)組的索引和切片的使用,文中通過示例代碼介紹的非常詳細,對大家的學習或者工作具有一定的參考學習價值,需要的朋友們下面隨著小編來一起學習學習吧2022-07-07
python3基于TCP實現(xiàn)CS架構(gòu)文件傳輸
這篇文章主要為大家詳細介紹了python3基于TCP實現(xiàn)CS架構(gòu)文件傳輸,具有一定的參考價值,感興趣的小伙伴們可以參考一下2018-07-07
使用Python批量處理Excel文件并轉(zhuǎn)為csv文件示例
這篇文章主要介紹了使用Python批量處理Excel文件并轉(zhuǎn)為csv文件示例,文中通過代碼示例給大家介紹非常詳細,對大家的學習或工作有一定的幫助,需要的朋友可以參考下2023-12-12
pycharm最新免費激活碼至2099年(21.3.18親測可用)
這篇文章主要介紹了pycharm最新的激活碼及激活碼的使用方法,幫助大家更好的利用pycharm學習python,感興趣的朋友可以了解下。2021-03-03

