opencv-python+yolov3實現(xiàn)目標(biāo)檢測
因為最近的任務(wù)有用到目標(biāo)檢測,所以昨天晚上、今天上午搞了一下,快速地了解了目標(biāo)檢測這一任務(wù),并且實現(xiàn)了使用opencv進行目標(biāo)檢測。
網(wǎng)上資料挺亂的,感覺在搜資源上浪費了我不少時間,所以我寫這篇博客,把我這段時間了解到的東西整理起來,供有緣的讀者參考學(xué)習(xí)。
目標(biāo)檢測概況
目標(biāo)檢測是?
目標(biāo)檢測,粗略來說就是:輸入圖片/視頻,經(jīng)過處理,得到:目標(biāo)的位置信息(比如左上角和右下角的坐標(biāo))、目標(biāo)的預(yù)測類別、目標(biāo)的預(yù)測置信度(confidence)。
拿Faster R-CNN這個算法舉例:輸入一個batch(batch size也可以為1)的圖片或者視頻,網(wǎng)絡(luò)直接的outputs是這樣的:
[batchId, classId, confidence, left, top, right, bottom],batchId, classId, confidence, left, top, right, bottom都是標(biāo)量。
batchId表示這一個batch中,這張圖片的id(也即index),后四個標(biāo)量即目標(biāo)的位置信息:左上角像素點和右下角像素點的坐標(biāo)。
目標(biāo)檢測算法?
按照歷史脈絡(luò)來談:
手工特征提取算法,如VJ、HOG、DPM
R-CNN算法(2014),最早的基于深度學(xué)習(xí)的目標(biāo)檢測器之一,其結(jié)構(gòu)是兩級網(wǎng)絡(luò):1)首先需要諸如選擇性搜索之類的算法來提出可能包含對象的候選邊界框;2)然后將這些區(qū)域傳遞到CNN算法進行分類;
R-CNN算法存在的問題是其仿真很慢,并且不是完整的端到端的目標(biāo)檢測器。
Fast R-CNN算法(2014末),對原始R-CNN進行了相當(dāng)大的改進:提高準(zhǔn)確度,并減少執(zhí)行正向傳遞所花費的時間。
但是,該模型仍然依賴于外部區(qū)域搜索算法。
faster R-CNN算法(2015),真正的端到端深度學(xué)習(xí)目標(biāo)檢測器。刪除了選擇性搜索的要求,而是依賴于
(1)完全卷積的區(qū)域提議網(wǎng)絡(luò)(RPN, Region Purpose Network),可以預(yù)測對象邊界框和“對象”分?jǐn)?shù)(量化它是一個區(qū)域的可能性的分?jǐn)?shù))。
(2)然后將RPN的輸出傳遞到R-CNN組件以進行最終分類和標(biāo)記。
R-CNN系列算法,都采取了two-stage策略。特點是:雖然檢測結(jié)果一般都非常準(zhǔn)確,但仿真速度非常慢,即使是在GPU上也僅獲得5 FPS。
one-stage方法有:yolo(2015)、SSD(2015末),以及在這兩個算法基礎(chǔ)上改進的各論文提出的算法。這些算法的基本思路是:均勻地在圖片的不同位置進行密集抽樣,抽樣時可以采用不同尺度和長寬比,然后利用CNN提取特征后直接進行分類與回歸。
整個過程只需要一步,所以其優(yōu)勢是速度快,但是訓(xùn)練比較困難。
yolov3(2018)是yolo作者提出的第三個版本(之前還提過yolov2和它們的tinny版本,tinny版本經(jīng)過壓縮更快但是也降低了準(zhǔn)確率)。yolov3支持80類物體的目標(biāo)檢測,完整列表[戳這里]: https://github.com/pjreddie/darknet/blob/master/data/coco.names
時間線:

yolov3模型簡介
性能介紹
首先,套路,yolov3很強大(不強大我用它干啥呢)。速度上,它比 R-CNN 快 1000 倍,比 Fast R-CNN 快 100 倍。檢測準(zhǔn)確率上,它不是最準(zhǔn)的:YOLOv3-608比 DSSD 更高,接近 FPN。但是它的速度不到后二者的1/3。
從下圖也可以看出:

架構(gòu)介紹

可以看出,他是一系列卷積、殘差、上采樣組成的。特點在于,它將預(yù)測分在三個尺度(Scale)進行(見圖中三個彩色框),也在三個scale分別輸出。
opencv-python實現(xiàn)
why opencv?
opencv( 3.4.2+版本)的dnn(Deep Neural Network-DNN)模塊封裝了Darknet框架,這個框架是
自己寫的,它由封裝了yolo算法。因為這么一層關(guān)系,我們可以使用opencv方便地使用yolo的各個版本,而且有數(shù)據(jù)(見下)證明OpenCV的DNN模塊在 CPU的實現(xiàn)速度比使用 OpenML 的 Darknet 快9倍。

正文
我會先結(jié)合腳本片段講解,再給出該腳本的完整代碼,講解。
先
引庫
import numpy as np import cv2 as cv import os import time
參數(shù):
yolo_dir = '/home/hessesummer/github/NTS-Net-my/yolov3' # YOLO文件路徑 weightsPath = os.path.join(yolo_dir, 'yolov3.weights') # 權(quán)重文件 configPath = os.path.join(yolo_dir, 'yolov3.cfg') # 配置文件 labelsPath = os.path.join(yolo_dir, 'coco.names') # label名稱 imgPath = os.path.join(yolo_dir, 'test.jpg') # 測試圖像 CONFIDENCE = 0.5 # 過濾弱檢測的最小概率 THRESHOLD = 0.4 # 非最大值抑制閾值
權(quán)重文件、配置文件、label名稱的下載地址:
wget https://pjreddie.com/media/files/yolov3.weights wget https://github.com/pjreddie/darknet/blob/master/cfg/yolov3.cfg wget https://github.com/pjreddie/darknet/blob/master/data/coco.names
簡單來說:
過濾弱檢測的最小概率:置信度小于這個值的輸出都不要了;
非最大值抑制閾值:允許框框重疊的程度(多框框檢測同一個物體),供下面的NMS算法使用,該算法會根據(jù)該值將有重疊的框框合并。值為0時,不允許框框重疊。默認(rèn)值是0.3。
詳細來說:
我沒查。您自己感興趣再了解吧。
重頭戲1:
# 加載網(wǎng)絡(luò)、配置權(quán)重
net = cv.dnn.readNetFromDarknet(configPath, weightsPath) ## 利用下載的文件
# print("[INFO] loading YOLO from disk...") ## 可以打印下信息
# 加載圖片、轉(zhuǎn)為blob格式、送入網(wǎng)絡(luò)輸入層
img = cv.imread(imgPath)
blobImg = cv.dnn.blobFromImage(img, 1.0/255.0, (416, 416), None, True, False) ## net需要的輸入是blob格式的,用blobFromImage這個函數(shù)來轉(zhuǎn)格式
net.setInput(blobImg) ## 調(diào)用setInput函數(shù)將圖片送入輸入層
# 獲取網(wǎng)絡(luò)輸出層信息(所有輸出層的名字),設(shè)定并前向傳播
outInfo = net.getUnconnectedOutLayersNames() ## 前面的yolov3架構(gòu)也講了,yolo在每個scale都有輸出,outInfo是每個scale的名字信息,供net.forward使用
# start = time.time()
layerOutputs = net.forward(outInfo) # 得到各個輸出層的、各個檢測框等信息,是二維結(jié)構(gòu)。
# end = time.time()
# print("[INFO] YOLO took {:.6f} seconds".format(end - start)) ## 可以打印下信息
layerOutputs是二維結(jié)構(gòu),第0維代表哪個輸出層,第1維代表各個檢測框。
其他的我都在注釋里講解了。
重頭戲2:
# 拿到圖片尺寸 (H, W) = img.shape[:2]
供下面使用:
# 過濾layerOutputs
# layerOutputs的第1維的元素內(nèi)容: [center_x, center_y, width, height, objectness, N-class score data]
# 過濾后的結(jié)果放入:
boxes = [] # 所有邊界框(各層結(jié)果放一起)
confidences = [] # 所有置信度
classIDs = [] # 所有分類ID
# # 1)過濾掉置信度低的框框
for out in layerOutputs: # 各個輸出層
for detection in out: # 各個框框
# 拿到置信度
scores = detection[5:] # 各個類別的置信度
classID = np.argmax(scores) # 最高置信度的id即為分類id
confidence = scores[classID] # 拿到置信度
# 根據(jù)置信度篩查
if confidence > CONFIDENCE:
box = detection[0:4] * np.array([W, H, W, H]) # 將邊界框放會圖片尺寸
(centerX, centerY, width, height) = box.astype("int")
x = int(centerX - (width / 2))
y = int(centerY - (height / 2))
boxes.append([x, y, int(width), int(height)])
confidences.append(float(confidence))
classIDs.append(classID)
# # 2)應(yīng)用非最大值抑制(non-maxima suppression,nms)進一步篩掉
idxs = cv.dnn.NMSBoxes(boxes, confidences, CONFIDENCE, THRESHOLD) # boxes中,保留的box的索引index存入idxs
這里的NMS算法就是前面提到的NMS算法。
應(yīng)用檢測結(jié)果,這里是畫出框框。
# 得到labels列表
with open(labelsPath, 'rt') as f:
labels = f.read().rstrip('\n').split('\n')
供下面使用:
# 應(yīng)用檢測結(jié)果
np.random.seed(42)
COLORS = np.random.randint(0, 255, size=(len(labels), 3), dtype="uint8") # 框框顯示顏色,每一類有不同的顏色,每種顏色都是由RGB三個值組成的,所以size為(len(labels), 3)
if len(idxs) > 0:
for i in idxs.flatten(): # indxs是二維的,第0維是輸出層,所以這里把它展平成1維
(x, y) = (boxes[i][0], boxes[i][1])
(w, h) = (boxes[i][2], boxes[i][3])
color = [int(c) for c in COLORS[classIDs[i]]]
cv.rectangle(img, (x, y), (x+w, y+h), color, 2) # 線條粗細為2px
text = "{}: {:.4f}".format(labels[classIDs[i]], confidences[i])
cv.putText(img, text, (x, y-5), cv.FONT_HERSHEY_SIMPLEX, 0.5, color, 2) # cv.FONT_HERSHEY_SIMPLEX字體風(fēng)格、0.5字體大小、粗細2px
cv.imshow('目標(biāo)檢測結(jié)果', img)
cv.waitKey(0)
第一部分講解結(jié)束,下面放完整代碼:
再
import numpy as np
import cv2 as cv
import os
import time
yolo_dir = '/home/hessesummer/github/NTS-Net-my/yolov3' # YOLO文件路徑
weightsPath = os.path.join(yolo_dir, 'yolov3.weights') # 權(quán)重文件
configPath = os.path.join(yolo_dir, 'yolov3.cfg') # 配置文件
labelsPath = os.path.join(yolo_dir, 'coco.names') # label名稱
imgPath = os.path.join(yolo_dir, 'test.jpg') # 測試圖像
CONFIDENCE = 0.5 # 過濾弱檢測的最小概率
THRESHOLD = 0.4 # 非最大值抑制閾值
# 加載網(wǎng)絡(luò)、配置權(quán)重
net = cv.dnn.readNetFromDarknet(configPath, weightsPath) # # 利用下載的文件
print("[INFO] loading YOLO from disk...") # # 可以打印下信息
# 加載圖片、轉(zhuǎn)為blob格式、送入網(wǎng)絡(luò)輸入層
img = cv.imread(imgPath)
blobImg = cv.dnn.blobFromImage(img, 1.0/255.0, (416, 416), None, True, False) # # net需要的輸入是blob格式的,用blobFromImage這個函數(shù)來轉(zhuǎn)格式
net.setInput(blobImg) # # 調(diào)用setInput函數(shù)將圖片送入輸入層
# 獲取網(wǎng)絡(luò)輸出層信息(所有輸出層的名字),設(shè)定并前向傳播
outInfo = net.getUnconnectedOutLayersNames() # # 前面的yolov3架構(gòu)也講了,yolo在每個scale都有輸出,outInfo是每個scale的名字信息,供net.forward使用
start = time.time()
layerOutputs = net.forward(outInfo) # 得到各個輸出層的、各個檢測框等信息,是二維結(jié)構(gòu)。
end = time.time()
print("[INFO] YOLO took {:.6f} seconds".format(end - start)) # # 可以打印下信息
# 拿到圖片尺寸
(H, W) = img.shape[:2]
# 過濾layerOutputs
# layerOutputs的第1維的元素內(nèi)容: [center_x, center_y, width, height, objectness, N-class score data]
# 過濾后的結(jié)果放入:
boxes = [] # 所有邊界框(各層結(jié)果放一起)
confidences = [] # 所有置信度
classIDs = [] # 所有分類ID
# # 1)過濾掉置信度低的框框
for out in layerOutputs: # 各個輸出層
for detection in out: # 各個框框
# 拿到置信度
scores = detection[5:] # 各個類別的置信度
classID = np.argmax(scores) # 最高置信度的id即為分類id
confidence = scores[classID] # 拿到置信度
# 根據(jù)置信度篩查
if confidence > CONFIDENCE:
box = detection[0:4] * np.array([W, H, W, H]) # 將邊界框放會圖片尺寸
(centerX, centerY, width, height) = box.astype("int")
x = int(centerX - (width / 2))
y = int(centerY - (height / 2))
boxes.append([x, y, int(width), int(height)])
confidences.append(float(confidence))
classIDs.append(classID)
# # 2)應(yīng)用非最大值抑制(non-maxima suppression,nms)進一步篩掉
idxs = cv.dnn.NMSBoxes(boxes, confidences, CONFIDENCE, THRESHOLD) # boxes中,保留的box的索引index存入idxs
# 得到labels列表
with open(labelsPath, 'rt') as f:
labels = f.read().rstrip('\n').split('\n')
# 應(yīng)用檢測結(jié)果
np.random.seed(42)
COLORS = np.random.randint(0, 255, size=(len(labels), 3), dtype="uint8") # 框框顯示顏色,每一類有不同的顏色,每種顏色都是由RGB三個值組成的,所以size為(len(labels), 3)
if len(idxs) > 0:
for i in idxs.flatten(): # indxs是二維的,第0維是輸出層,所以這里把它展平成1維
(x, y) = (boxes[i][0], boxes[i][1])
(w, h) = (boxes[i][2], boxes[i][3])
color = [int(c) for c in COLORS[classIDs[i]]]
cv.rectangle(img, (x, y), (x+w, y+h), color, 2) # 線條粗細為2px
text = "{}: {:.4f}".format(labels[classIDs[i]], confidences[i])
cv.putText(img, text, (x, y-5), cv.FONT_HERSHEY_SIMPLEX, 0.5, color, 2) # cv.FONT_HERSHEY_SIMPLEX字體風(fēng)格、0.5字體大小、粗細2px
cv.imshow('detected image', img)
cv.waitKey(0)
結(jié)果:

到此這篇關(guān)于opencv-python+yolov3實現(xiàn)目標(biāo)檢測的文章就介紹到這了,更多相關(guān)opencv yolov3目標(biāo)檢測內(nèi)容請搜索腳本之家以前的文章或繼續(xù)瀏覽下面的相關(guān)文章希望大家以后多多支持腳本之家!
- Python如何將LabelMe生成的JSON格式轉(zhuǎn)換成YOLOv8支持的TXT格式
- Python+Yolov5人臉口罩識別的詳細步驟
- python目標(biāo)檢測YoloV4當(dāng)中的Mosaic數(shù)據(jù)增強方法
- Python3.7 + Yolo3實現(xiàn)識別語音播報功能
- Python Flask搭建yolov3目標(biāo)檢測系統(tǒng)詳解流程
- 對YOLOv3模型調(diào)用時候的python接口詳解
- Python+樹莓派+YOLO打造一款人工智能照相機
- 使用python和yolo方法實現(xiàn)yolo標(biāo)簽自動標(biāo)注
相關(guān)文章
數(shù)據(jù)驅(qū)動測試DDT之Selenium讀取Excel文件
這篇文章主要為大家介紹了數(shù)據(jù)驅(qū)動測試DDT之Selenium讀取Excel文件,2021-11-11
編寫Python腳本批量下載DesktopNexus壁紙的教程
這篇文章主要介紹了編寫Python腳本批量下載DesktopNexus壁紙的教程,相較于普通的爬蟲抓取,本文的下載壁紙教程還包括了設(shè)置所要下載的分辨率等功能的實現(xiàn),需要的朋友可以參考下2015-05-05
django處理select下拉表單實例(從model到前端到post到form)
這篇文章主要介紹了django處理select下拉表單實例(從model到前端到post到form),具有很好的參考價值,希望對大家有所幫助。一起跟隨小編過來看看吧2020-03-03
Python實現(xiàn)將PowerPoint轉(zhuǎn)為HTML格式
有時我們需要將精心設(shè)計的PPT發(fā)布到網(wǎng)絡(luò)上以便于更廣泛的訪問和分享,本文將介紹如何使用Python將PowerPoint轉(zhuǎn)換為HTML格式,需要的可以參考下2024-04-04
Python數(shù)據(jù)結(jié)構(gòu)與算法中的棧詳解
這篇文章主要為大家詳細介紹了Python數(shù)據(jù)結(jié)構(gòu)與算法中的棧,文中示例代碼介紹的非常詳細,具有一定的參考價值,感興趣的小伙伴們可以參考一下,希望能夠給你帶來幫助2022-03-03
對python中基于tcp協(xié)議的通信(數(shù)據(jù)傳輸)實例講解
今天小編就為大家分享一篇對python中基于tcp協(xié)議的通信(數(shù)據(jù)傳輸)實例講解,具有很好的參考價值,希望對大家有所幫助。一起跟隨小編過來看看吧2019-07-07

