關(guān)于keras多任務(wù)多l(xiāng)oss回傳的思考
如果有一個(gè)多任務(wù)多l(xiāng)oss的網(wǎng)絡(luò),那么在訓(xùn)練時(shí),loss是如何工作的呢?
比如下面:
model = Model(inputs = input, outputs = [y1, y2]) l1 = 0.5 l2 = 0.3 model.compile(loss = [loss1, loss2], loss_weights=[l1, l2], ...)
其實(shí)我們最終得到的loss為
final_loss = l1 * loss1 + l2 * loss2
我們最終的優(yōu)化效果是最小化final_loss。
問(wèn)題來(lái)了,在訓(xùn)練過(guò)程中,是否loss2只更新得到y(tǒng)2的網(wǎng)絡(luò)通路,還是loss2會(huì)更新所有的網(wǎng)絡(luò)層呢?
此問(wèn)題的關(guān)鍵在梯度回傳上,即反向傳播算法。


所以loss1只對(duì)x1和x2有影響,而loss2只對(duì)x1和x3有影響。
補(bǔ)充:keras 多個(gè)LOSS總和定義

用字典形式,名字是模型中輸出那一層的名字,這里的loss可以是自己定義的,也可是自帶的
補(bǔ)充:keras實(shí)戰(zhàn)-多類別分割loss實(shí)現(xiàn)
本文樣例均為3d數(shù)據(jù)的onehot標(biāo)簽形式,即y_true(batch_size,x,y,z,class_num)
1、dice loss
def dice_coef_fun(smooth=1):
def dice_coef(y_true, y_pred):
#求得每個(gè)sample的每個(gè)類的dice
intersection = K.sum(y_true * y_pred, axis=(1,2,3))
union = K.sum(y_true, axis=(1,2,3)) + K.sum(y_pred, axis=(1,2,3))
sample_dices=(2. * intersection + smooth) / (union + smooth) #一維數(shù)組 為各個(gè)類別的dice
#求得每個(gè)類的dice
dices=K.mean(sample_dices,axis=0)
return K.mean(dices) #所有類別dice求平均的dice
return dice_coef
def dice_coef_loss_fun(smooth=0):
def dice_coef_loss(y_true,y_pred):
return 1-1-dice_coef_fun(smooth=smooth)(y_true=y_true,y_pred=y_pred)
return dice_coef_loss
2、generalized dice loss
def generalized_dice_coef_fun(smooth=0):
def generalized_dice(y_true, y_pred):
# Compute weights: "the contribution of each label is corrected by the inverse of its volume"
w = K.sum(y_true, axis=(0, 1, 2, 3))
w = 1 / (w ** 2 + 0.00001)
# w為各個(gè)類別的權(quán)重,占比越大,權(quán)重越小
# Compute gen dice coef:
numerator = y_true * y_pred
numerator = w * K.sum(numerator, axis=(0, 1, 2, 3))
numerator = K.sum(numerator)
denominator = y_true + y_pred
denominator = w * K.sum(denominator, axis=(0, 1, 2, 3))
denominator = K.sum(denominator)
gen_dice_coef = numerator / denominator
return 2 * gen_dice_coef
return generalized_dice
def generalized_dice_loss_fun(smooth=0):
def generalized_dice_loss(y_true,y_pred):
return 1 - generalized_dice_coef_fun(smooth=smooth)(y_true=y_true,y_pred=y_pred)
return generalized_dice_loss
3、tversky coefficient loss
# Ref: salehi17, "Twersky loss function for image segmentation using 3D FCDN"
# -> the score is computed for each class separately and then summed
# alpha=beta=0.5 : dice coefficient
# alpha=beta=1 : tanimoto coefficient (also known as jaccard)
# alpha+beta=1 : produces set of F*-scores
# implemented by E. Moebel, 06/04/18
def tversky_coef_fun(alpha,beta):
def tversky_coef(y_true, y_pred):
p0 = y_pred # proba that voxels are class i
p1 = 1 - y_pred # proba that voxels are not class i
g0 = y_true
g1 = 1 - y_true
# 求得每個(gè)sample的每個(gè)類的dice
num = K.sum(p0 * g0, axis=( 1, 2, 3))
den = num + alpha * K.sum(p0 * g1,axis= ( 1, 2, 3)) + beta * K.sum(p1 * g0, axis=( 1, 2, 3))
T = num / den #[batch_size,class_num]
# 求得每個(gè)類的dice
dices=K.mean(T,axis=0) #[class_num]
return K.mean(dices)
return tversky_coef
def tversky_coef_loss_fun(alpha,beta):
def tversky_coef_loss(y_true,y_pred):
return 1-tversky_coef_fun(alpha=alpha,beta=beta)(y_true=y_true,y_pred=y_pred)
return tversky_coef_loss
4、IoU loss
def IoU_fun(eps=1e-6):
def IoU(y_true, y_pred):
# if np.max(y_true) == 0.0:
# return IoU(1-y_true, 1-y_pred) ## empty image; calc IoU of zeros
intersection = K.sum(y_true * y_pred, axis=[1,2,3])
union = K.sum(y_true, axis=[1,2,3]) + K.sum(y_pred, axis=[1,2,3]) - intersection
#
ious=K.mean((intersection + eps) / (union + eps),axis=0)
return K.mean(ious)
return IoU
def IoU_loss_fun(eps=1e-6):
def IoU_loss(y_true,y_pred):
return 1-IoU_fun(eps=eps)(y_true=y_true,y_pred=y_pred)
return IoU_loss
以上為個(gè)人經(jīng)驗(yàn),希望能給大家一個(gè)參考,也希望大家多多支持腳本之家。
相關(guān)文章
pyqt5 lineEdit設(shè)置密碼隱藏,刪除lineEdit已輸入的內(nèi)容等屬性方法
今天小編就為大家分享一篇pyqt5 lineEdit設(shè)置密碼隱藏,刪除lineEdit已輸入的內(nèi)容等屬性方法,具有很好的參考價(jià)值,希望對(duì)大家有所幫助。一起跟隨小編過(guò)來(lái)看看吧2019-06-06
Django基于Models定制Admin后臺(tái)實(shí)現(xiàn)過(guò)程解析
這篇文章主要介紹了Django基于Models定制Admin后臺(tái)實(shí)現(xiàn)過(guò)程解析,文中通過(guò)示例代碼介紹的非常詳細(xì),對(duì)大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價(jià)值,需要的朋友可以參考下2020-11-11
Python進(jìn)階之遞歸函數(shù)的用法及其示例
本篇文章主要介紹了Python進(jìn)階之遞歸函數(shù)的用法及其示例,小編覺(jué)得挺不錯(cuò)的,現(xiàn)在分享給大家,也給大家做個(gè)參考。一起跟隨小編過(guò)來(lái)看看吧2018-01-01
Python基于requests庫(kù)爬取網(wǎng)站信息
這篇文章主要介紹了python基于requests庫(kù)爬取網(wǎng)站信息,文中通過(guò)示例代碼介紹的非常詳細(xì),對(duì)大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價(jià)值,需要的朋友可以參考下2020-03-03
python 中的collections.OrderedDict() 用法
這篇文章主要介紹了python 中的collections.OrderedDict() 用法,具有很好的參考價(jià)值,希望對(duì)大家有所幫助。如有錯(cuò)誤或未考慮完全的地方,望不吝賜教2021-05-05
FP-growth算法發(fā)現(xiàn)頻繁項(xiàng)集——構(gòu)建FP樹
常見的挖掘頻繁項(xiàng)集算法有兩類,一類是Apriori算法,另一類是FP-growth。Apriori通過(guò)不斷的構(gòu)造候選集、篩選候選集挖掘出頻繁項(xiàng)集,需要多次掃描原始數(shù)據(jù),當(dāng)原始數(shù)據(jù)較大時(shí),磁盤I/O次數(shù)太多,效率比較低下2021-06-06

