R語(yǔ)言關(guān)于數(shù)據(jù)幀的知識(shí)點(diǎn)詳解
數(shù)據(jù)幀是表或二維陣列狀結(jié)構(gòu),其中每一列包含一個(gè)變量的值,并且每一行包含來(lái)自每一列的一組值。
以下是數(shù)據(jù)幀的特性。
- 列名稱應(yīng)為非空。
- 行名稱應(yīng)該是唯一的。
- 存儲(chǔ)在數(shù)據(jù)幀中的數(shù)據(jù)可以是數(shù)字,因子或字符類型。
- 每個(gè)列應(yīng)包含相同數(shù)量的數(shù)據(jù)項(xiàng)。
創(chuàng)建數(shù)據(jù)幀
# Create the data frame.
emp.data <- data.frame(
emp_id = c (1:5),
emp_name = c("Rick","Dan","Michelle","Ryan","Gary"),
salary = c(623.3,515.2,611.0,729.0,843.25),
start_date = as.Date(c("2012-01-01", "2013-09-23", "2014-11-15", "2014-05-11",
"2015-03-27")),
stringsAsFactors = FALSE
)
# Print the data frame.
print(emp.data)
當(dāng)我們執(zhí)行上面的代碼,它產(chǎn)生以下結(jié)果 -
emp_id emp_name salary start_date 1 1 Rick 623.30 2012-01-01 2 2 Dan 515.20 2013-09-23 3 3 Michelle 611.00 2014-11-15 4 4 Ryan 729.00 2014-05-11 5 5 Gary 843.25 2015-03-27
獲取數(shù)據(jù)幀的結(jié)構(gòu)
通過(guò)使用str()函數(shù)可以看到數(shù)據(jù)幀的結(jié)構(gòu)。
# Create the data frame.
emp.data <- data.frame(
emp_id = c (1:5),
emp_name = c("Rick","Dan","Michelle","Ryan","Gary"),
salary = c(623.3,515.2,611.0,729.0,843.25),
start_date = as.Date(c("2012-01-01", "2013-09-23", "2014-11-15", "2014-05-11",
"2015-03-27")),
stringsAsFactors = FALSE
)
# Get the structure of the data frame.
str(emp.data)
當(dāng)我們執(zhí)行上面的代碼,它產(chǎn)生以下結(jié)果 -
'data.frame': 5 obs. of 4 variables: $ emp_id : int 1 2 3 4 5 $ emp_name : chr "Rick" "Dan" "Michelle" "Ryan" ... $ salary : num 623 515 611 729 843 $ start_date: Date, format: "2012-01-01" "2013-09-23" "2014-11-15" "2014-05-11" ...
數(shù)據(jù)框中的數(shù)據(jù)摘要
可以通過(guò)應(yīng)用summary()函數(shù)獲取數(shù)據(jù)的統(tǒng)計(jì)摘要和性質(zhì)。
# Create the data frame.
emp.data <- data.frame(
emp_id = c (1:5),
emp_name = c("Rick","Dan","Michelle","Ryan","Gary"),
salary = c(623.3,515.2,611.0,729.0,843.25),
start_date = as.Date(c("2012-01-01", "2013-09-23", "2014-11-15", "2014-05-11",
"2015-03-27")),
stringsAsFactors = FALSE
)
# Print the summary.
print(summary(emp.data))
當(dāng)我們執(zhí)行上面的代碼,它產(chǎn)生以下結(jié)果 -
emp_id emp_name salary start_date
Min. :1 Length:5 Min. :515.2 Min. :2012-01-01
1st Qu.:2 Class :character 1st Qu.:611.0 1st Qu.:2013-09-23
Median :3 Mode :character Median :623.3 Median :2014-05-11
Mean :3 Mean :664.4 Mean :2014-01-14
3rd Qu.:4 3rd Qu.:729.0 3rd Qu.:2014-11-15
Max. :5 Max. :843.2 Max. :2015-03-27
從數(shù)據(jù)幀提取數(shù)據(jù)
使用列名稱從數(shù)據(jù)框中提取特定列。
# Create the data frame.
emp.data <- data.frame(
emp_id = c (1:5),
emp_name = c("Rick","Dan","Michelle","Ryan","Gary"),
salary = c(623.3,515.2,611.0,729.0,843.25),
start_date = as.Date(c("2012-01-01","2013-09-23","2014-11-15","2014-05-11",
"2015-03-27")),
stringsAsFactors = FALSE
)
# Extract Specific columns.
result <- data.frame(emp.data$emp_name,emp.data$salary)
print(result)
當(dāng)我們執(zhí)行上面的代碼,它產(chǎn)生以下結(jié)果 -
emp.data.emp_name emp.data.salary 1 Rick 623.30 2 Dan 515.20 3 Michelle 611.00 4 Ryan 729.00 5 Gary 843.25
先提取前兩行,然后提取所有列
# Create the data frame.
emp.data <- data.frame(
emp_id = c (1:5),
emp_name = c("Rick","Dan","Michelle","Ryan","Gary"),
salary = c(623.3,515.2,611.0,729.0,843.25),
start_date = as.Date(c("2012-01-01", "2013-09-23", "2014-11-15", "2014-05-11",
"2015-03-27")),
stringsAsFactors = FALSE
)
# Extract first two rows.
result <- emp.data[1:2,]
print(result)
當(dāng)我們執(zhí)行上面的代碼,它產(chǎn)生以下結(jié)果 -
emp_id emp_name salary start_date 1 1 Rick 623.3 2012-01-01 2 2 Dan 515.2 2013-09-23
用第2和第4列提取第3和第5行
# Create the data frame.
emp.data <- data.frame(
emp_id = c (1:5),
emp_name = c("Rick","Dan","Michelle","Ryan","Gary"),
salary = c(623.3,515.2,611.0,729.0,843.25),
start_date = as.Date(c("2012-01-01", "2013-09-23", "2014-11-15", "2014-05-11",
"2015-03-27")),
stringsAsFactors = FALSE
)
# Extract 3rd and 5th row with 2nd and 4th column.
result <- emp.data[c(3,5),c(2,4)]
print(result)
當(dāng)我們執(zhí)行上面的代碼,它產(chǎn)生以下結(jié)果 -
emp_name start_date 3 Michelle 2014-11-15 5 Gary 2015-03-27
擴(kuò)展數(shù)據(jù)幀
可以通過(guò)添加列和行來(lái)擴(kuò)展數(shù)據(jù)幀。
添加列
只需使用新的列名稱添加列向量。
# Create the data frame.
emp.data <- data.frame(
emp_id = c (1:5),
emp_name = c("Rick","Dan","Michelle","Ryan","Gary"),
salary = c(623.3,515.2,611.0,729.0,843.25),
start_date = as.Date(c("2012-01-01", "2013-09-23", "2014-11-15", "2014-05-11",
"2015-03-27")),
stringsAsFactors = FALSE
)
# Add the "dept" coulmn.
emp.data$dept <- c("IT","Operations","IT","HR","Finance")
v <- emp.data
print(v)
當(dāng)我們執(zhí)行上面的代碼,它產(chǎn)生以下結(jié)果 -
emp_id emp_name salary start_date dept 1 1 Rick 623.30 2012-01-01 IT 2 2 Dan 515.20 2013-09-23 Operations 3 3 Michelle 611.00 2014-11-15 IT 4 4 Ryan 729.00 2014-05-11 HR 5 5 Gary 843.25 2015-03-27 Finance
添加行
要將更多行永久添加到現(xiàn)有數(shù)據(jù)幀,我們需要引入與現(xiàn)有數(shù)據(jù)幀相同結(jié)構(gòu)的新行,并使用rbind()函數(shù)。
在下面的示例中,我們創(chuàng)建一個(gè)包含新行的數(shù)據(jù)幀,并將其與現(xiàn)有數(shù)據(jù)幀合并以創(chuàng)建最終數(shù)據(jù)幀。
# Create the first data frame.
emp.data <- data.frame(
emp_id = c (1:5),
emp_name = c("Rick","Dan","Michelle","Ryan","Gary"),
salary = c(623.3,515.2,611.0,729.0,843.25),
start_date = as.Date(c("2012-01-01", "2013-09-23", "2014-11-15", "2014-05-11",
"2015-03-27")),
dept = c("IT","Operations","IT","HR","Finance"),
stringsAsFactors = FALSE
)
# Create the second data frame
emp.newdata <- data.frame(
emp_id = c (6:8),
emp_name = c("Rasmi","Pranab","Tusar"),
salary = c(578.0,722.5,632.8),
start_date = as.Date(c("2013-05-21","2013-07-30","2014-06-17")),
dept = c("IT","Operations","Fianance"),
stringsAsFactors = FALSE
)
# Bind the two data frames.
emp.finaldata <- rbind(emp.data,emp.newdata)
print(emp.finaldata)
當(dāng)我們執(zhí)行上面的代碼,它產(chǎn)生以下結(jié)果 -
emp_id emp_name salary start_date dept 1 1 Rick 623.30 2012-01-01 IT 2 2 Dan 515.20 2013-09-23 Operations 3 3 Michelle 611.00 2014-11-15 IT 4 4 Ryan 729.00 2014-05-11 HR 5 5 Gary 843.25 2015-03-27 Finance 6 6 Rasmi 578.00 2013-05-21 IT 7 7 Pranab 722.50 2013-07-30 Operations 8 8 Tusar 632.80 2014-06-17 Fianance
到此這篇關(guān)于R語(yǔ)言關(guān)于數(shù)據(jù)幀的知識(shí)點(diǎn)詳解的文章就介紹到這了,更多相關(guān)R語(yǔ)言數(shù)據(jù)幀內(nèi)容請(qǐng)搜索腳本之家以前的文章或繼續(xù)瀏覽下面的相關(guān)文章希望大家以后多多支持腳本之家!
相關(guān)文章
基于R語(yǔ)言xlsx安裝遇到的問(wèn)題及解決方案
這篇文章主要介紹了基于R語(yǔ)言xlsx安裝遇到的問(wèn)題及解決方案,具有很好的參考價(jià)值,希望對(duì)大家有所幫助。一起跟隨小編過(guò)來(lái)看看吧2021-04-04
R語(yǔ)言中cbind、rbind和merge函數(shù)的使用與區(qū)別
這篇文章主要介紹了R語(yǔ)言中cbind、rbind和merge函數(shù)的使用與區(qū)別,文中通過(guò)示例代碼介紹的非常詳細(xì),對(duì)大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價(jià)值,需要的朋友們下面隨著小編來(lái)一起學(xué)習(xí)學(xué)習(xí)吧2021-03-03
R語(yǔ)言中cut()函數(shù)的用法說(shuō)明
這篇文章主要介紹了R語(yǔ)言中cut()函數(shù)的用法說(shuō)明,具有很好的參考價(jià)值,希望對(duì)大家有所幫助。一起跟隨小編過(guò)來(lái)看看吧2021-04-04
Rstudio更換默認(rèn)下載鏡像(下載源)的操作教程
這篇文章主要介紹了Rstudio更換默認(rèn)下載鏡像(下載源)的操作教程,具有很好的參考價(jià)值,希望對(duì)大家有所幫助。一起跟隨小編過(guò)來(lái)看看吧2021-04-04
Rcpp和RcppArmadillo創(chuàng)建R語(yǔ)言包的實(shí)現(xiàn)方式
這篇文章主要為大家介紹了Rcpp和RcppArmadillo創(chuàng)建R包實(shí)現(xiàn)方式,有需要的朋友可以借鑒參考下,希望能夠有所幫助,祝大家多多進(jìn)步,早日升職加薪2021-11-11
R語(yǔ)言關(guān)于協(xié)方差分析實(shí)例分析
在本篇內(nèi)容里小編給大家整理的是一篇關(guān)于R語(yǔ)言關(guān)于協(xié)方差分析實(shí)例分析內(nèi)容,有興趣的朋友們可以學(xué)習(xí)下。2021-05-05

