R語(yǔ)言中向量的加法和乘法運(yùn)算
在R語(yǔ)言中,不同長(zhǎng)度的向量也是可以相加和相乘的,乘法的規(guī)則和加法類(lèi)似
1,相同長(zhǎng)度的向量相加
> x<- 1:4 > y<- 1:4 > z<- x+y > z
[1] 2 4 6 8
規(guī)則就是 x[1]+y[1],x[2]+y[2],x[3]+y[3],x[4]+y[4]
> x<- 1:4 > y<- 1:4 > z<- x*y > z [1] 1 4 9 16
乘法也類(lèi)似
2,不同長(zhǎng)度的向量相加
> x<- 1:4 > y<- 1:3 > z<-x+y 警告信息: In x + y : 長(zhǎng)的對(duì)象長(zhǎng)度不是短的對(duì)象長(zhǎng)度的整倍數(shù) > z [1] 2 4 6 5 >
注意R返回了一個(gè)警告消息而不是一個(gè)錯(cuò)誤消息, 因此這個(gè)操作實(shí)際上是被執(zhí)行了的。
這一類(lèi)的規(guī)則就是 x[1]+y[1],x[2]+y[2],x[3]+y[3],x[4]+y[1](因?yàn)閥[3]就結(jié)束了,進(jìn)入了又一次循環(huán))
乘法規(guī)則類(lèi)似
> x<- 1:4 > y<- 1:3 > z<- x*y 警告信息: In x * y : 長(zhǎng)的對(duì)象長(zhǎng)度不是短的對(duì)象長(zhǎng)度的整倍數(shù) > z [1] 1 4 9 4
另外,所得的向量長(zhǎng)度為最長(zhǎng)的那個(gè)向量的長(zhǎng)度
> x<- 1:4 > y<- 1:3 > z<- 2:3 > w<- x+y+z 警告信息: In x + y : 長(zhǎng)的對(duì)象長(zhǎng)度不是短的對(duì)象長(zhǎng)度的整倍數(shù) > w [1] 4 7 8 8 > v<-x*y*z 警告信息: In x * y : 長(zhǎng)的對(duì)象長(zhǎng)度不是短的對(duì)象長(zhǎng)度的整倍數(shù) > v [1] 2 12 18 12 >
但是這里出了一個(gè)問(wèn)題,
> x<- 1:4 > y<- 1:3 > z<- 2:3 > x+y+z [1] 4 7 8 8 警告信息: In x + y : 長(zhǎng)的對(duì)象長(zhǎng)度不是短的對(duì)象長(zhǎng)度的整倍數(shù) > x+z+y [1] 4 7 8 8 警告信息: In x + z + y : 長(zhǎng)的對(duì)象長(zhǎng)度不是短的對(duì)象長(zhǎng)度的整倍數(shù) > z+x+y [1] 4 7 8 8 警告信息: In z + x + y : 長(zhǎng)的對(duì)象長(zhǎng)度不是短的對(duì)象長(zhǎng)度的整倍數(shù) ><span style="color:#ff0000;"> z+y+x [1] 4 7 8 7</span> 警告信息: 1: In z + y : 長(zhǎng)的對(duì)象長(zhǎng)度不是短的對(duì)象長(zhǎng)度的整倍數(shù) 2: In z + y + x : 長(zhǎng)的對(duì)象長(zhǎng)度不是短的對(duì)象長(zhǎng)度的整倍數(shù) > z*x*y [1] 2 12 18 12 警告信息: In z * x * y : 長(zhǎng)的對(duì)象長(zhǎng)度不是短的對(duì)象長(zhǎng)度的整倍數(shù) > z*y*x [1] 2 12 18 8 警告信息: 1: In z * y : 長(zhǎng)的對(duì)象長(zhǎng)度不是短的對(duì)象長(zhǎng)度的整倍數(shù) 2: In z * y * x : 長(zhǎng)的對(duì)象長(zhǎng)度不是短的對(duì)象長(zhǎng)度的整倍數(shù) >
不知道各位注意到了沒(méi)有,難道我們的方法不對(duì)么
首先,加法和乘法運(yùn)算,在沒(méi)有括號(hào)等其他優(yōu)先級(jí)的情況下是從左至右依次算的
我們來(lái)看一下
> x<- c(1,2,3,4) > y<- c(1,2,3) > z<- c(2,3) > x+y [1] 2 4 6 5 > x+y+z [1] 4 7 8 8
> z+y [1] 3 5 5 > z+y+x [1] 4 7 8 7
所以說(shuō),不同長(zhǎng)度的向量相加,順序也是很重要的。
補(bǔ)充:R語(yǔ)言向量_常用的向量運(yùn)算
向量運(yùn)算與邏輯運(yùn)算
> 2+3 [1] 5 > "+"(2,3) [1] 5 > x<-c(1,2,4) > x+c(5,0,-1) [1] 6 2 3
這些都比較簡(jiǎn)單,就是簡(jiǎn)單的標(biāo)量運(yùn)算和向量運(yùn)算,只不過(guò)是運(yùn)算符可以放到前面,并且向量的對(duì)應(yīng)元素需要相加罷了。
> x<-c(1,2,4) > x*c(5,0,-1) [1] 5 0 -4 > x<-c(1,2,4) > x/c(5,4,-1) [1] 0.2 0.5 -4.0 > x%%c(5,4,-1) [1] 1 2 0
對(duì)于這幾步的運(yùn)算需要注意一下幾點(diǎn):*運(yùn)算就是向量對(duì)應(yīng)元素相乘,和線(xiàn)性代數(shù)里面的矩陣相乘并不一樣。/運(yùn)算就是對(duì)應(yīng)元素相除就好。%%運(yùn)算就是對(duì)應(yīng)元素相除取余數(shù)。
向量索引
> y<-c(1.2,3.9,0.4,0.12) > y[c(1,3)] [1] 1.2 0.4 > y[2:3] [1] 3.9 0.4 > v<-3:4 > y[v] [1] 0.40 0.12
這些都比較容易,一看就會(huì),不做詳細(xì)解釋
> x<-c(4,2,17,5) > y<-x[c(1,1,3)] > y [1] 4 4 17
這個(gè)例子是想講元素重復(fù)是允許的
> z<-c(5,12,13) > z[-1] [1] 12 13 > z[-1:-2] [1] 13
帶負(fù)號(hào)的下標(biāo)代表我們想要把相應(yīng)的元素剔除掉。
用:運(yùn)算符創(chuàng)建向量
> 5:8 [1] 5 6 7 8 > 5:1 [1] 5 4 3 2 1 > i<-2 > 1:i-1 [1] 0 1 > 1:(i-1) [1] 1
:運(yùn)算符實(shí)際上就是為了得到一串等差數(shù)列,比較簡(jiǎn)單,但是要特別講一下的是1:i-1和1:(i-1),這里面實(shí)際上及一個(gè)運(yùn)算符優(yōu)先級(jí)的問(wèn)題,1:i-1是先計(jì)算1:i得到1 2,然后再減1得到0 1,而1:(i-1)是先計(jì)算i-1得到1后然后計(jì)算1:1,最后答案就是1.
使用seq()創(chuàng)建向量
這個(gè)函數(shù)也是用來(lái)生成等差數(shù)列的,具體用法看例子
> seq(from=12,to=30,by=3) [1] 12 15 18 21 24 27 30
這一段代碼表示從12到30生成等差數(shù)列,公差為3
> seq(from=1.1,to=2,length=10) [1] 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0
這個(gè)表示從1.1到2生成10個(gè)數(shù)的等差數(shù)列
使用rep()重復(fù)向量常數(shù)
調(diào)用的格式是rep(x,times),表示創(chuàng)建times*length(x)個(gè)元素的向量,這個(gè)向量是有x重復(fù)times此構(gòu)成。
> x<-rep(8,4) > x [1] 8 8 8 8 > rep(c(5,12,13),3) [1] 5 12 13 5 12 13 5 12 13 > rep(1:3,2) [1] 1 2 3 1 2 3 > rep(c(5,12,13),each=2) [1] 5 5 12 12 13 13
最后一個(gè)each表示向量中每一個(gè)元素重復(fù)的次數(shù),一個(gè)個(gè)元素重復(fù)的,不再是整個(gè)向量重復(fù)。
以上為個(gè)人經(jīng)驗(yàn),希望能給大家一個(gè)參考,也希望大家多多支持腳本之家。如有錯(cuò)誤或未考慮完全的地方,望不吝賜教。
相關(guān)文章
R語(yǔ)言學(xué)習(xí)筆記缺失數(shù)據(jù)的Bootstrap與Jackknife方法
這篇文章主要為大家介紹了R語(yǔ)言學(xué)習(xí)筆記關(guān)于缺失數(shù)據(jù)的Bootstrap與Jackknife的方法,有需要的朋友可以借鑒參考下,希望能夠有所幫助,祝大家多多進(jìn)步2021-11-11
Rcpp和RcppArmadillo創(chuàng)建R語(yǔ)言包的實(shí)現(xiàn)方式
這篇文章主要為大家介紹了Rcpp和RcppArmadillo創(chuàng)建R包實(shí)現(xiàn)方式,有需要的朋友可以借鑒參考下,希望能夠有所幫助,祝大家多多進(jìn)步,早日升職加薪2021-11-11
詳解R語(yǔ)言MCMC:Metropolis-Hastings采樣用于回歸的貝葉斯估計(jì)
這篇文章主要介紹了R語(yǔ)言MCMC:Metropolis-Hastings采樣用于回歸的貝葉斯估計(jì),本文通過(guò)圖文實(shí)例相結(jié)合給大家介紹的非常詳細(xì),對(duì)大家的學(xué)習(xí)或工作具有一定的參考借鑒價(jià)值,需要的朋友可以參考下2021-03-03
R語(yǔ)言函數(shù)基礎(chǔ)知識(shí)點(diǎn)總結(jié)
在本篇文章里小編給大家整理了一篇關(guān)于R語(yǔ)言函數(shù)基礎(chǔ)知識(shí)點(diǎn)總結(jié)內(nèi)容,有興趣的朋友們可以學(xué)習(xí)參考下。2021-04-04
R語(yǔ)言實(shí)現(xiàn)PCA主成分分析圖的示例代碼
主成分分析(Principal?Component?Analysis,PCA)是一種無(wú)監(jiān)督的數(shù)據(jù)降維方法,通過(guò)主成分分析可以盡可能保留下具備區(qū)分性的低維數(shù)據(jù)特征。本文將用R語(yǔ)言實(shí)現(xiàn)PCA主成分分析圖,需要的可以參考一下2022-04-04
淺析R語(yǔ)言中map(映射)與reduce(規(guī)約)
大家在R語(yǔ)言數(shù)據(jù)處理中非常常見(jiàn)map(映射)與reduce(規(guī)約)操作,map表示映射,可以在一個(gè)或多個(gè)列表/向量的每個(gè)位置上應(yīng)用相同函數(shù)進(jìn)行計(jì)算而reduce函數(shù)表示規(guī)約,計(jì)算向量中相鄰的兩個(gè)元素,本文給大家介紹R語(yǔ)言map與reduce的相關(guān)知識(shí),感興趣的朋友一起看看吧2021-05-05

