R語言 Factor類型的變量使用說明
factor類型的創(chuàng)建
1. factor( )
> credit_rating <- c("BB", "AAA", "AA", "CCC", "AA", "AAA", "B", "BB") #生成名為credit_rating的字符向量
> credit_factor <- factor(credit_rating) # step 2.將credit_rating轉(zhuǎn)化為因子
> credit_factor
[1] BB AAA AA CCC AA AAA B BB
Levels: AA AAA B BB CCC
> str(credit_rating) #調(diào)用str()函數(shù),顯示credit_rating結(jié)構(gòu)
chr [1:8] "BB" "AAA" "AA" "CCC" "AA" "AAA" "B" "BB"
> str(credit_factor) #調(diào)用str()函數(shù),顯示credit_factor結(jié)構(gòu)
Factor w/ 5 levels "AA","AAA","B",..: 4 2 1 5 1 2 3 4
2. levels( )
上述代碼中第二個運(yùn)行后得到了levals,用于顯示不同的因子(不重復(fù)),上述代碼運(yùn)行一二行
>credit_rating <- c("BB", "AAA", "AA", "CCC", "AA", "AAA", "B", "BB")
> credit_factor <- factor(credit_rating) # step 2.將credit_rating轉(zhuǎn)化為因子
> credit_factor
[1] BB AAA AA CCC AA AAA B BB
Levels: AA AAA B BB CCC
> levels(credit_factor)
[1] "AA" "AAA" "B" "BB" "CCC"
>levels(credit_factor) <-c("2A","3A","1B","2B","3C")
> credit_factor
[1] 2B 3A 2A 3C 2A 3A 1B 2B
Levels: 2A 3A 1B 2B 3C
3. Factor 匯總:summary()函數(shù)
> summary(credit_rating) Length Class Mode 8 character character > summary(credit_factor) AA AAA B BB CCC 2 2 1 2 1
4. factor 可視化:plot()
# 使用plot()將credit_factor可視化 plot(credit_factor) #> summary(credit_factor) # AA AAA B BB CCC # 2 2 1 2 1

5. cut( )函數(shù) 對數(shù)據(jù)進(jìn)行分組
>AAA_rank <- sample(seq(1:100), 50, replace = T)
> AAA_rank
[1] 90 28 63 57 96 41 93 70 76 36 26 1 86 43 47 15 23 70
[19] 63 1 79 100 20 59 17 23 84 96 21 33 32 19 52 58 81 37
[37] 22 58 42 75 41 64 15 58 63 2 1 65 54 35
> # step 1:使用cut()函數(shù)為AAA_rank創(chuàng)建4個組
> AAA_factor <- cut(x = AAA_rank , breaks =c(0,25,50,75,100) )
> > AAA_factor
[1] (75,100] (25,50] (50,75] (50,75] (75,100] (25,50] (75,100] (50,75]
[9] (75,100] (25,50] (25,50] (0,25] (75,100] (25,50] (25,50] (0,25]
[17] (0,25] (50,75] (50,75] (0,25] (75,100] (75,100] (0,25] (50,75]
[25] (0,25] (0,25] (75,100] (75,100] (0,25] (25,50] (25,50] (0,25]
[33] (50,75] (50,75] (75,100] (25,50] (0,25] (50,75] (25,50] (50,75]
[41] (25,50] (50,75] (0,25] (50,75] (50,75] (0,25] (0,25] (50,75]
[49] (50,75] (25,50]
Levels: (0,25] (25,50] (50,75] (75,100]
> # step 2:使用levels()按順序?qū)⒓墑e重命名
> levels(AAA_factor) <- c("low","medium","high","very_high")
>
> # step 3:輸出AAA_factor
> AAA_factor
[1] medium medium very_high high very_high high high
[8] high medium medium very_high high medium very_high
[15] medium low medium low high medium low
[22] medium high very_high very_high very_high medium very_high
[29] low low low medium very_high low very_high
[36] low very_high low low high medium medium
[43] medium low low low low medium medium
[50] medium
Levels: low medium high very_high
>
> # step 4:繪制AAA_factor
> plot(AAA_factor)
>

6. 刪除元素 :- 表示刪除
(1)-1:刪除第一位的元素,-3:刪除第三位的元素
(2)
> credit_factor [1] BB AAA AA CCC AA AAA B BB Levels: AA AAA B BB CCC > # 刪除位于`credit_factor`第3和第7位的`A`級債券,不使用`drop=TRUE` > keep_level <- credit_factor[c(-3,-7)] > > # 繪制keep_level > plot(keep_level) > > # 使用相同的數(shù)據(jù),刪除位于`credit_factor`第3和第7位的`A`級債券,使用`drop=TRUE` > drop_level <-credit_factor[c(-3,-7),drop=TRUE] > > # 繪制drop_level > plot(drop_level) >
7. 轉(zhuǎn)換Factor為String類型
>cash=data.frame(company = c("A", "A", "B"), cash_flow = c(100, 200, 300), year = c(1, 3, 2)) #創(chuàng)建數(shù)據(jù)框
>str(cash)
'data.frame': 3 obs. of 3 variables:
$ company : Factor w/ 2 levels "A","B": 1 1 2
$ cash_flow: num 100 200 300
$ year : num 1 3 2
注意:創(chuàng)建數(shù)據(jù)框時,R的默認(rèn)行為是將所有字符轉(zhuǎn)換為因子
那么,如何在創(chuàng)建數(shù)據(jù)框時,不讓r的默認(rèn)行為執(zhí)行呢?
采用 stringsAsFactors = FALSE
> cash=data.frame(company = c("A", "A", "B"), cash_flow = c(100, 200, 300), year = c(1, 3, 2),stringsAsFactors=FALSE) #創(chuàng)建數(shù)據(jù)框
> str(cash)
'data.frame': 3 obs. of 3 variables:
$ company : chr "A" "A" "B"
$ cash_flow: num 100 200 300
$ year : num 1 3 2
8. 創(chuàng)建有序Factor類型:ordered=TRUE
# 有序Factor類型
credit_rating <- c("AAA", "AA", "A", "BBB", "AA", "BBB", "A")
credit_factor_ordered <- factor(credit_rating, ordered = TRUE, levels = c("AAA", "AA", "A", "BBB"))
>credit_rating <- c("BB", "AAA", "AA", "CCC", "AA", "AAA", "B", "BB")
> credit_factor <- factor(credit_rating) # step 2.將credit_rating轉(zhuǎn)化為因子
> credit_factor #此時的credit_factor 無序
>ordered(credit_factor, levels = c("AAA", "AA", "A", "BBB"))
9. 刪除因子級別時,采用drop=TRUE
>credit_factor [1] AAA AA A BBB AA BBB A Levels: BBB < A < AA < AAA >credit_factor[-1] [1] AA A BBB AA BBB A Levels: BBB < A < AA < AAA #可見,AAA還存在 >credit_factor[-1, drop = TRUE] #完全放棄AAA級別 [1] AA A BBB AA BBB A Levels: BBB < A < AA
以上為個人經(jīng)驗,希望能給大家一個參考,也希望大家多多支持腳本之家。如有錯誤或未考慮完全的地方,望不吝賜教。
相關(guān)文章
R語言繪制Facet violin plot小提琴刻面圖實現(xiàn)示例
這篇文章主要為大家介紹了R語言繪制Facet violin plot小提琴刻面圖的實現(xiàn)示例,有需要的朋友可以借鑒參考下,希望能夠有所幫助,祝大家多多進(jìn)步2022-02-02
R語言將變量分組的3種方法實例(含cut函數(shù)說明)
在數(shù)據(jù)處理分析過程中,變量分組是經(jīng)常遇到的,下面這篇文章主要給大家介紹了關(guān)于R語言將變量分組的3種方法,其中含cut函數(shù)說明的相關(guān)資料,文中通過實例代碼介紹的非常詳細(xì),需要的朋友可以參考下2022-08-08
R包制作后出現(xiàn)not available for錯誤問題解決解決

