pandas的Series類型與基本操作詳解
1 Series
線性的數(shù)據(jù)結(jié)構(gòu), series是一個(gè)一維數(shù)組
Pandas 會(huì)默然用0到n-1來(lái)作為series的index, 但也可以自己指定index( 可以把index理解為dict里面的key )
1.1創(chuàng)造一個(gè)serise數(shù)據(jù)
import pandas as pd import numpy as np s = pd.Series([9, 'zheng', 'beijing', 128]) print(s)
打印
0 9
1 zheng
2 beijing
3 128
dtype: object
訪問(wèn)其中某個(gè)數(shù)據(jù)
print(s[1:2]) # 打印 1 zheng dtype: object
Series類型的基本操作:
Series類型包括index和values兩部分
In [14]: a = pd.Series({'a':1,'b':5})
In [15]: a.index
Out[15]: Index(['a', 'b'], dtype='object')
In [16]: a.values #返回一個(gè)多維數(shù)組numpy對(duì)象
Out[16]: array([1, 5], dtype=int64)
Series類型的操作類似ndarray類型
#自動(dòng)索引和自定義索引并存,但不能混用 In [17]: a[0] #自動(dòng)索引 Out[17]: 1 #自定義索引 In [18]: a['a'] Out[18]: 1 #不能混用 In [20]: a[['a',1]] Out[20]: a 1.0 1 NaN dtype: float64
Series類型的操作類似Python字典類型
#通過(guò)自定義索引訪問(wèn) #對(duì)索引保留字in操作,值不可以 In [21]: 'a' in a Out[21]: True In [22]: 1 in a Out[22]: False
Series類型在運(yùn)算中會(huì)自動(dòng)對(duì)齊不同索引的數(shù)據(jù)
In [29]: a = pd.Series([1,3,5],index = ['a','b','c']) In [30]: b = pd.Series([2,4,5,6],index = ['c,','d','e','b']) In [31]: a+b Out[31]: a NaN b 9.0 c NaN c, NaN d NaN e NaN dtype: float64
Series對(duì)象可以隨時(shí)修改并即刻生效
In [32]: a.index = ['c','d','e'] In [33]: a Out[33]: c 1 d 3 e 5 dtype: int64 In [34]: a+b Out[34]: b NaN c NaN c, NaN d 7.0 e 10.0 dtype: float64
1.2 指定index
import pandas as pd import numpy as np s = pd.Series([9, 'zheng', 'beijing', 128, 'usa', 990], index=[1,2,3,'e','f','g']) print(s)
打印
1 9
2 zheng
3 beijing
e 128
f usa
g 990
dtype: object
根據(jù)索引找出值
print(s['f']) # usa
1.3 用dictionary構(gòu)造一個(gè)series
import pandas as pd
import numpy as np
s = {"ton": 20, "mary": 18, "jack": 19, "car": None}
sa = pd.Series(s, name="age")
print(sa)
打印
car NaN
jack 19.0
mary 18.0
ton 20.0
Name: age, dtype: float64
檢測(cè)類型
print(type(sa)) # <class 'pandas.core.series.Series'>
1.4 用numpy ndarray構(gòu)造一個(gè)Series
生成一個(gè)隨機(jī)數(shù)
import pandas as pd
import numpy as np
num_abc = pd.Series(np.random.randn(5), index=list('abcde'))
num = pd.Series(np.random.randn(5))
print(num)
print(num_abc)
# 打印
0 -0.102860
1 -1.138242
2 1.408063
3 -0.893559
4 1.378845
dtype: float64
a -0.658398
b 1.568236
c 0.535451
d 0.103117
e -1.556231
dtype: float64
1.5 選擇數(shù)據(jù)
import pandas as pd import numpy as np s = pd.Series([9, 'zheng', 'beijing', 128, 'usa', 990], index=[1,2,3,'e','f','g']) print(s[1:3]) # 選擇第1到3個(gè), 包左不包右 zheng beijing print(s[[1,3]]) # 選擇第1個(gè)和第3個(gè), zheng 128 print(s[:-1]) # 選擇第1個(gè)到倒數(shù)第1個(gè), 9 zheng beijing 128 usa
1.6 操作數(shù)據(jù)
import pandas as pd import numpy as np s = pd.Series([9, 'zheng', 'beijing', 128, 'usa', 990], index=[1,2,3,'e','f','g']) sum = s[1:3] + s[1:3] sum1 = s[1:4] + s[1:4] sum2 = s[1:3] + s[1:4] sum3 = s[:3] + s[1:] print(sum) print(sum1) print(sum2) print(sum3)
打印
2 zhengzheng
3 beijingbeijing
dtype: object
2 zhengzheng
3 beijingbeijing
e 256
dtype: object
2 zhengzheng
3 beijingbeijing
e NaN
dtype: object
1 NaN
2 zhengzheng
3 beijingbeijing
e NaN
f NaN
g NaN
dtype: object
1.7 查找
是否存在
USA in s # true
范圍查找
import pandas as pd
import numpy as np
s = {"ton": 20, "mary": 18, "jack": 19, "jim": 22, "lj": 24, "car": None}
sa = pd.Series(s, name="age")
print(sa[sa>19])

中位數(shù)
import pandas as pd
import numpy as np
s = {"ton": 20, "mary": 18, "jack": 19, "jim": 22, "lj": 24, "car": None}
sa = pd.Series(s, name="age")
print(sa.median()) # 20
判斷是否大于中位數(shù)
import pandas as pd
import numpy as np
s = {"ton": 20, "mary": 18, "jack": 19, "jim": 22, "lj": 24, "car": None}
sa = pd.Series(s, name="age")
print(sa>sa.median())

找出大于中位數(shù)的數(shù)
import pandas as pd
import numpy as np
s = {"ton": 20, "mary": 18, "jack": 19, "jim": 22, "lj": 24, "car": None}
sa = pd.Series(s, name="age")
print(sa[sa > sa.median()])

中位數(shù)
import pandas as pd
import numpy as np
s = {"ton": 20, "mary": 18, "jack": 19, "jim": 22, "lj": 24, "car": None}
sa = pd.Series(s, name="age")
more_than_midian = sa>sa.median()
print(more_than_midian)
print('---------------------')
print(sa[more_than_midian])

1.8 Series賦值
import pandas as pd
import numpy as np
s = {"ton": 20, "mary": 18, "jack": 19, "jim": 22, "lj": 24, "car": None}
sa = pd.Series(s, name="age")
print(s)
print('----------------')
sa['ton'] = 99
print(sa)

1.9 滿足條件的統(tǒng)一賦值
import pandas as pd
import numpy as np
s = {"ton": 20, "mary": 18, "jack": 19, "jim": 22, "lj": 24, "car": None}
sa = pd.Series(s, name="age")
print(s) # 打印原字典
print('---------------------') # 分割線
sa[sa>19] = 88 # 將所有大于19的同一改為88
print(sa) # 打印更改之后的數(shù)據(jù)
print('---------------------') # 分割線
print(sa / 2) # 將所有數(shù)據(jù)除以2

到此這篇關(guān)于pandas的Series類型與基本操作詳解的文章就介紹到這了,更多相關(guān)pandas Series基本操作內(nèi)容請(qǐng)搜索腳本之家以前的文章或繼續(xù)瀏覽下面的相關(guān)文章希望大家以后多多支持腳本之家!
- Python數(shù)據(jù)分析?Pandas?Series對(duì)象操作
- 使用python計(jì)算方差方式——pandas.series.std()
- Pandas數(shù)據(jù)結(jié)構(gòu)詳細(xì)說(shuō)明及如何創(chuàng)建Series,DataFrame對(duì)象方法
- 教你漂亮打印Pandas DataFrames和Series
- Pandas把dataframe或series轉(zhuǎn)換成list的方法
- pandas中的series數(shù)據(jù)類型詳解
- 淺談Pandas Series 和 Numpy array中的相同點(diǎn)
- Pandas中Series的屬性,方法,常用操作使用案例
相關(guān)文章
解決pycharm中opencv-python導(dǎo)入cv2后無(wú)法自動(dòng)補(bǔ)全的問(wèn)題(不用作任何文件上的修改)
這篇文章主要介紹了解決pycharm中opencv-python導(dǎo)入cv2后無(wú)法自動(dòng)補(bǔ)全的問(wèn)題(不用作任何文件上的修改),本文給大家介紹的非常詳細(xì),對(duì)大家的學(xué)習(xí)或工作具有一定的參考借鑒價(jià)值,需要的朋友可以參考下2020-03-03
基于Python和C++實(shí)現(xiàn)刪除鏈表的節(jié)點(diǎn)
這篇文章主要介紹了基于Python和C++實(shí)現(xiàn)刪除鏈表的節(jié)點(diǎn),文中通過(guò)示例代碼介紹的非常詳細(xì),對(duì)大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價(jià)值,需要的朋友可以參考下2020-07-07
Python如何根據(jù)字幕文件自動(dòng)給視頻添加字幕效果
視頻中字幕的重要性不用多說(shuō)了,下面這篇文章主要給大家介紹了關(guān)于Python如何根據(jù)字幕文件自動(dòng)給視頻添加字幕效果的相關(guān)資料,文中通過(guò)實(shí)例代碼介紹的非常詳細(xì),需要的朋友可以參考下2022-02-02
OpenCV角點(diǎn)檢測(cè)的實(shí)現(xiàn)示例
角點(diǎn)通常被定義為兩條邊的交點(diǎn),本文主要介紹了OpenCV角點(diǎn)檢測(cè)的實(shí)現(xiàn)示例,文中通過(guò)示例代碼介紹的非常詳細(xì),具有一定的參考價(jià)值,感興趣的小伙伴們可以參考一下2022-03-03
Selenium環(huán)境變量配置(火狐瀏覽器)及驗(yàn)證實(shí)現(xiàn)
這篇文章主要介紹了Selenium環(huán)境變量配置(火狐瀏覽器)及驗(yàn)證實(shí)現(xiàn),文中通過(guò)示例代碼介紹的非常詳細(xì),對(duì)大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價(jià)值,需要的朋友們下面隨著小編來(lái)一起學(xué)習(xí)學(xué)習(xí)吧2020-12-12

