基于opencv實(shí)現(xiàn)車道線檢測(cè)
基于opencv的車道線檢測(cè),供大家參考,具體內(nèi)容如下
原理:
算法基本思想說明:
傳統(tǒng)的車道線檢測(cè),多數(shù)是基于霍夫直線檢測(cè),其實(shí)這個(gè)里面有個(gè)很大的誤區(qū),霍夫直線擬合容易受到各種噪聲干擾,直接運(yùn)用有時(shí)候效果不好,更多的時(shí)候通過霍夫直線檢測(cè)進(jìn)行初步的篩選,然后再有針對(duì)性的進(jìn)行直線擬合,根據(jù)擬合的直線四個(gè)點(diǎn)坐標(biāo),繪制出車道線,這種方式可以有效避免霍夫直線擬合不良后果,是一種更加穩(wěn)定的車道線檢測(cè)方法,在實(shí)際項(xiàng)目中,可以選擇兩種方法并行,在計(jì)算出結(jié)果后進(jìn)行疊加或者對(duì)比提取,今天分享的案例主要是繞開了霍夫直線檢測(cè),通過對(duì)二值圖像進(jìn)行輪廓分析與幾何分析,提取到相關(guān)的車道線信息、然后進(jìn)行特定區(qū)域的像素掃描,擬合生成直線方程,確定四個(gè)點(diǎn)繪制出車道線,對(duì)連續(xù)的視頻來說,如果某一幀無法正常檢測(cè),就可以通過緩存來替代繪制,從而實(shí)現(xiàn)在視頻車道線檢測(cè)中實(shí)時(shí)可靠。
原理圖:

代碼:
#include <opencv2/opencv.hpp>
#include <iostream>
#include <cmath>
using namespace cv;
using namespace std;
/**
**1、讀取視頻
**2、二值化
**3、輪廓發(fā)現(xiàn)
**4、輪廓分析、面積就算,角度分析
**5、直線擬合
**6、畫出直線
**
*/
Point left_line[2];
Point right_line[2];
void process(Mat &frame, Point *left_line, Point *right_line);
Mat fitLines(Mat &image, Point *left_line, Point *right_line);
int main(int argc, char** argv) {
//讀取視頻
VideoCapture capture("E:/opencv/road_line.mp4");
int height = capture.get(CAP_PROP_FRAME_HEIGHT);
int width = capture.get(CAP_PROP_FRAME_WIDTH);
int count = capture.get(CAP_PROP_FRAME_COUNT);
int fps = capture.get(CAP_PROP_FPS);
//初始化
left_line[0] = Point(0,0);
left_line[1] = Point(0, 0);
right_line[0] = Point(0, 0);
right_line[1] = Point(0, 0);
cout << height<<" "<< width<< " " <<count<< " " <<fps << endl;
//循環(huán)讀取視頻
Mat frame;
while (true) {
int ret = capture.read(frame);
if (!ret) {
break;
}
imshow("input", frame);
process(frame, left_line, right_line);
char c = waitKey(5);
if (c == 27) {
break;
}
}
}
void process(Mat &frame, Point *left_line, Point *right_line ){
Mat gray,binary;
/**灰度化*/
cvtColor(frame, gray, COLOR_BGR2GRAY);
//threshold(gray, binary, );
//邊緣檢測(cè)
Canny(gray, binary, 150, 300);
//imshow("Canny", binary);
for (size_t i = 0; i < (gray.rows/2+40); i++) {
for (size_t j = 0; j < gray.cols; j++)
{
binary.at<uchar>(i, j) = 0;
}
}
imshow("binary", binary);
//尋找輪廓
vector<vector<Point>> contours;
findContours(binary, contours, RETR_EXTERNAL, CHAIN_APPROX_SIMPLE);
Mat out_image = Mat::zeros(gray.size(), gray.type());
for (int i = 0; i < contours.size(); i++)
{
//計(jì)算面積與周長
double length = arcLength(contours[i], true);
double area = contourArea(contours[i]);
//cout << "周長 length:" << length << endl;
//cout << "面積 area:" << area << endl;
//外部矩形邊界
Rect rect = boundingRect(contours[i]);
int h = gray.rows - 50;
//輪廓分析:
if (length < 5.0 || area < 10.0) {
continue;
}
if (rect.y > h) {
continue;
}
//最小包圍矩形
RotatedRect rrt = minAreaRect(contours[i]);
//cout << "最小包圍矩形 angle:" << rrt.angle << endl;
double angle = abs(rrt.angle);
//angle < 50.0 || angle>89.0
if (angle < 20.0 || angle>84.0) {
continue;
}
if (contours[i].size() > 5) {
//用橢圓擬合
RotatedRect errt = fitEllipse(contours[i]);
//cout << "用橢圓擬合err.angle:" << errt.angle << endl;
if ((errt.angle<5.0) || (errt.angle>160.0))
{
if (80.0 < errt.angle && errt.angle < 100.0) {
continue;
}
}
}
//cout << "開始繪制:" << endl;
drawContours(out_image, contours, i, Scalar(255), 2, 8);
imshow("out_image", out_image);
}
Mat result = fitLines(out_image, left_line, right_line);
imshow("result", result);
Mat dst;
addWeighted(frame, 0.8, result, 0.5,0, dst);
imshow("lane-lines", dst);
}
//直線擬合
Mat fitLines(Mat &image, Point *left_line, Point *right_line) {
int height = image.rows;
int width = image.cols;
Mat out = Mat::zeros(image.size(), CV_8UC3);
int cx = width / 2;
int cy = height / 2;
vector<Point> left_pts;
vector<Point> right_pts;
Vec4f left;
for (int i = 100; i < (cx-10); i++)
{
for (int j = cy; j < height; j++)
{
int pv = image.at<uchar>(j, i);
if (pv == 255)
{
left_pts.push_back(Point(i, j));
}
}
}
for (int i = cx; i < (width-20); i++)
{
for (int j = cy; j < height; j++)
{
int pv = image.at<uchar>(j, i);
if (pv == 255)
{
right_pts.push_back(Point(i, j));
}
}
}
if (left_pts.size() > 2)
{
fitLine(left_pts, left, DIST_L1, 0, 0.01, 0.01);
double k1 = left[1] / left[0];
double step = left[3] - k1 * left[2];
int x1 = int((height - step) / k1);
int y2 = int((cx - 25)*k1 + step);
Point left_spot_1 = Point(x1, height);
Point left_spot_end = Point((cx - 25), y2);
line(out, left_spot_1, left_spot_end, Scalar(0, 0, 255), 8, 8, 0);
left_line[0] = left_spot_1;
left_line[1] = left_spot_end;
}
else
{
line(out, left_line[0], left_line[1], Scalar(0, 0, 255), 8, 8, 0);
}
if (right_pts.size()>2)
{
Point spot_1 = right_pts[0];
Point spot_end = right_pts[right_pts.size()-1];
int x1 = spot_1.x;
int y1 = spot_1.y;
int x2 = spot_end.x;
int y2 = spot_end.y;
line(out, spot_1, spot_end, Scalar(0, 0, 255), 8, 8, 0);
right_line[0] = spot_1;
right_line[1] = spot_end;
}
else
{
line(out, right_line[0], right_line[1], Scalar(0, 0, 255), 8, 8, 0);
}
return out;
}
結(jié)果圖片:

以上就是本文的全部內(nèi)容,希望對(duì)大家的學(xué)習(xí)有所幫助,也希望大家多多支持腳本之家。
相關(guān)文章
C語言掃雷詳細(xì)代碼分步實(shí)現(xiàn)流程
掃雷是電腦上很經(jīng)典的游戲,特意去網(wǎng)上玩了一會(huì),幾次調(diào)試之后,發(fā)現(xiàn)這個(gè)比三子棋要復(fù)雜一些,尤其是空白展開算法上和堵截玩家有的一拼,與實(shí)際游戲差別較大,不能使用光標(biāo),下面來詳解每一步分析2022-02-02
利用OpenCV實(shí)現(xiàn)局部動(dòng)態(tài)閾值分割
這篇文章主要為大家詳細(xì)介紹了利用OpenCV實(shí)現(xiàn)局部動(dòng)態(tài)閾值分割,具有一定的參考價(jià)值,感興趣的小伙伴們可以參考一下2018-01-01
C語言學(xué)生成績管理系統(tǒng)設(shè)計(jì)
這篇文章主要為大家詳細(xì)介紹了C語言學(xué)生成績管理系統(tǒng)設(shè)計(jì),文中示例代碼介紹的非常詳細(xì),具有一定的參考價(jià)值,感興趣的小伙伴們可以參考一下2018-01-01
全排列算法的非遞歸實(shí)現(xiàn)與遞歸實(shí)現(xiàn)的方法(C++)
本篇文章是對(duì)全排列算法的非遞歸實(shí)現(xiàn)與遞歸實(shí)現(xiàn)的方法進(jìn)行了詳細(xì)的分析介紹,需要的朋友參考下2013-05-05

