Python識別處理照片中的條形碼
最近一直在玩數(shù)獨,突發(fā)奇想實現(xiàn)圖像識別求解數(shù)獨,輸入到輸出平均需要0.5s。
整體思路大概就是識別出圖中數(shù)字生成list,然后求解。
輸入輸出demo
數(shù)獨采用的是微軟自帶的Microsoft sudoku軟件隨便截取的圖像,如下圖所示:

經過程序求解后,得到的結果如下圖所示:

def getFollow(varset, terminalset, first_dic, production_list):
follow_dic = {}
done = {}
for var in varset:
follow_dic[var] = set()
done[var] = 0
follow_dic["A1"].add("#")
# for var in terminalset:
# follow_dic[var]=set()
# done[var] = 0
for var in follow_dic:
getFollowForVar(var, varset, terminalset, first_dic, production_list, follow_dic, done)
return follow_dic
def getFollowForVar(var, varset, terminalset, first_dic, production_list, follow_dic, done):
if done[var] == 1:
return
for production in production_list:
if var in production.right:
##index這里在某些極端情況下有bug,比如多次出現(xiàn)var,index只會返回最左側的
if production.right.index(var) != len(production.right) - 1:
follow_dic[var] = first_dic[production.right[production.right.index(var) + 1]] | follow_dic[var]
# 沒有考慮右邊有非終結符但是為null的情況
if production.right[len(production.right) - 1] == var:
if var != production.left[0]:
# print(var, "吸納", production.left[0])
getFollowForVar(production.left[0], varset, terminalset, first_dic, production_list, follow_dic,
done)
follow_dic[var] = follow_dic[var] | follow_dic[production.left[0]]
done[var] = 1
程序具體流程
程序整體流程如下圖所示:

讀入圖像后,根據求解輪廓信息找到數(shù)字所在位置,以及不包含數(shù)字的空白位置,提取數(shù)字信息通過KNN識別,識別出數(shù)字;無數(shù)字信息的在list中置0;生成未求解數(shù)獨list,之后求解數(shù)獨,將信息在原圖中顯示出來。
def initProduction():
production_list = []
production = Production(["A1"], ["A"], 0)
production_list.append(production)
production = Production(["A"], ["E", "I", "(", ")", "{", "D", "}"], 1)
production_list.append(production)
production = Production(["E"], ["int"], 2)
production_list.append(production)
production = Production(["E"], ["float"], 3)
production_list.append(production)
production = Production(["D"], ["D", ";", "B"], 4)
production_list.append(production)
production = Production(["B"], ["F"], 5)
production_list.append(production)
production = Production(["B"], ["G"], 6)
production_list.append(production)
production = Production(["B"], ["M"], 7)
production_list.append(production)
production = Production(["F"], ["E", "I"], 8)
production_list.append(production)
production = Production(["G"], ["I", "=", "P"], 9)
production_list.append(production)
production = Production(["P"], ["K"], 10)
production_list.append(production)
production = Production(["P"], ["K", "+", "P"], 11)
production_list.append(production)
production = Production(["P"], ["K", "-", "P"], 12)
production_list.append(production)
production = Production(["I"], ["id"], 13)
production_list.append(production)
production = Production(["K"], ["I"], 14)
production_list.append(production)
production = Production(["K"], ["number"], 15)
production_list.append(production)
production = Production(["K"], ["floating"], 16)
production_list.append(production)
production = Production(["M"], ["while", "(", "T", ")", "{", "D", ";", "}"], 18)
production_list.append(production)
production = Production(["N"], ["if", "(", "T", ")", "{", "D",";", "}", "else", "{", "D", ";","}"], 19)
production_list.append(production)
production = Production(["T"], ["K", "L", "K"], 20)
production_list.append(production)
production = Production(["L"], [">"], 21)
production_list.append(production)
production = Production(["L"], ["<"], 22)
production_list.append(production)
production = Production(["L"], [">="], 23)
production_list.append(production)
production = Production(["L"], ["<="], 24)
production_list.append(production)
production = Production(["L"], ["=="], 25)
production_list.append(production)
production = Production(["D"], ["B"], 26)
production_list.append(production)
production = Production(["B"], ["N"], 27)
production_list.append(production)
return production_list
source = [[5, "int", " 關鍵字"], [1, "lexicalanalysis", " 標識符"], [13, "(", " 左括號"], [14, ")", " 右括號"], [20, "{", " 左大括號"],
[4, "float", " 關鍵字"], [1, "a", " 標識符"], [15, ";", " 分號"], [5, "int", " 關鍵字"], [1, "b", " 標識符"],
[15, ";", " 分號"], [1, "a", " 標識符"], [12, "=", " 賦值號"], [3, "1.1", " 浮點數(shù)"], [15, ";", " 分號"], [1, "b", " 標識符"],
[12, "=", " 賦值號"], [2, "2", " 整數(shù)"], [15, ";", " 分號"], [8, "while", " 關鍵字"], [13, "(", " 左括號"],
[1, "b", " 標識符"], [17, "<", " 小于號"], [2, "100", " 整數(shù)"], [14, ")", " 右括號"], [20, "{", " 左大括號"],
[1, "b", " 標識符"], [12, "=", " 賦值號"], [1, "b", " 標識符"], [9, "+", " 加 號"], [2, "1", " 整數(shù)"], [15, ";", " 分號"],
[1, "a", " 標識符"], [12, "=", " 賦值號"], [1, "a", " 標識符"], [9, "+", " 加號"], [2, "3", " 整數(shù)"], [15, ";", " 分號"],
[21, "}", " 右大括號"], [15, ";", " 分號"], [6, "if", " 關鍵字"], [13, "(", " 左括號"], [1, "a", " 標識符"],
[16, ">", " 大于號"], [2, "5", " 整數(shù)"], [14, ")", " 右括號"], [20, "{", " 左大括號"], [1, "b", " 標識符"],
[12, "=", " 賦值號"], [1, "b", " 標識符"], [10, "-", " 減號"], [2, "1", " 整數(shù)"], [15, ";", " 分號"], [21, "}", " 右大括號"],
[7, "else", " 關鍵字"], [20, "{", " 左大括號"], [1, "b", " 標識符"], [12, "=", " 賦值號"], [1, "b", " 標識符"],
[9, "+", " 加號"], [2, "1", " 整數(shù)"], [15, ";", " 分號"], [21, "}", " 右大括號"], [21, "}", " 右大括號"]]
以上就是Python識別處理照片中的條形碼的詳細內容,更多關于python 識別條形碼的資料請關注腳本之家其它相關文章!
相關文章
pycharm社區(qū)版安裝node.js插件運行js代碼方法
PyCharm可以說是當今最流行的一款Python IDE了,下面這篇文章主要給大家介紹了關于pycharm社區(qū)版安裝node.js插件運行js代碼的相關資料,文中通過代碼介紹的非常詳細,需要的朋友可以參考下2023-10-10
一文帶你深入了解Python中的GeneratorExit異常處理
GeneratorExit是Python內置的異常,當生成器或協(xié)程被強制關閉時,Python解釋器會向其發(fā)送這個異常,下面我們來看看如何處理這一異常吧2025-03-03

