Python爬取股票信息,并可視化數(shù)據(jù)的示例
前言
截止2019年年底我國股票投資者數(shù)量為15975.24萬戶, 如此多的股民熱衷于炒股,首先拋開炒股技術(shù)不說, 那么多股票數(shù)據(jù)是不是非常難找, 找到之后是不是看著密密麻麻的數(shù)據(jù)是不是頭都大了?
今天帶大家爬取雪球平臺的股票數(shù)據(jù), 并且實(shí)現(xiàn)數(shù)據(jù)可視化
先看下效果圖

基本環(huán)境配置
- python 3.6
- pycharm
- requests
- csv
- time
目標(biāo)地址

爬蟲代碼
請求網(wǎng)頁
import requests url = 'https://xueqiu.com/service/v5/stock/screener/quote/list' response = requests.get(url=url, params=params, headers=headers, cookies=cookies) html_data = response.json()
解析數(shù)據(jù)
data_list = html_data['data']['list']
for i in data_list:
dit = {}
dit['股票代碼'] = i['symbol']
dit['股票名字'] = i['name']
dit['當(dāng)前價(jià)'] = i['current']
dit['漲跌額'] = i['chg']
dit['漲跌幅/%'] = i['percent']
dit['年初至今/%'] = i['current_year_percent']
dit['成交量'] = i['volume']
dit['成交額'] = i['amount']
dit['換手率/%'] = i['turnover_rate']
dit['市盈率TTM'] = i['pe_ttm']
dit['股息率/%'] = i['dividend_yield']
dit['市值'] = i['market_capital']
print(dit)
保存數(shù)據(jù)
import csv
f = open('股票數(shù)據(jù).csv', mode='a', encoding='utf-8-sig', newline='')
csv_writer = csv.DictWriter(f, fieldnames=['股票代碼', '股票名字', '當(dāng)前價(jià)', '漲跌額', '漲跌幅/%', '年初至今/%', '成交量', '成交額', '換手率/%', '市盈率TTM', '股息率/%', '市值'])
csv_writer.writeheader()
csv_writer.writerow(dit)
f.close()
完整代碼
import pprint
import requests
import time
import csv
f = open('股票數(shù)據(jù).csv', mode='a', encoding='utf-8-sig', newline='')
csv_writer = csv.DictWriter(f, fieldnames=['股票代碼', '股票名稱', '當(dāng)前價(jià)', '漲跌額', '漲跌幅/%', '年初至今/%', '成交量', '成交額', '換手率/%', '市盈率TTM', '股息率/%', '市值'])
csv_writer.writeheader()
for page in range(1, 53):
time.sleep(1)
url = 'https://xueqiu.com/service/v5/stock/screener/quote/list'
date = round(time.time()*1000)
params = {
'page': '{}'.format(page),
'size': '30',
'order': 'desc',
'order_by': 'amount',
'exchange': 'CN',
'market': 'CN',
'type': 'sha',
'_': '{}'.format(date),
}
cookies = {
'Cookie': 'acw_tc=2760824216007592794858354eb971860e97492387fac450a734dbb6e89afb; xq_a_token=636e3a77b735ce64db9da253b75cbf49b2518316; xqat=636e3a77b735ce64db9da253b75cbf49b2518316; xq_r_token=91c25a6a9038fa2532dd45b2dd9b573a35e28cfd; xq_id_token=eyJ0eXAiOiJKV1QiLCJhbGciOiJSUzI1NiJ9.eyJ1aWQiOi0xLCJpc3MiOiJ1YyIsImV4cCI6MTYwMjY0MzAyMCwiY3RtIjoxNjAwNzU5MjY3OTEwLCJjaWQiOiJkOWQwbjRBWnVwIn0.bengzIpmr0io9f44NJdHuc_6g9EIjtrSlMgnqwKSWVzI4syI_yIH1F-GJfK4bTelWzDirufjWMW9DfDMyMkI75TpJqiwIq8PRsa1bQ7IuCXLbN71ebsiTOGfA5OsWSPQOdVXQA0goqC4yvXLOk5KgC5FQIzZut0N4uaRDLsq7vhmcb8CBw504tCZnbIJTfGGIFIfw7TkwuUCXGY6Q-0mlOG8U4EUTcOCuxN87Ej_OIKnXN8cTSVh7XW6SFxOgU6p3yUXDgvS04rt-nFewpNNqfbGAKk965N-HJ9Mq8E52BRJ3rt_ndYP8yCaeQ6xSsz5P2mNlKwNFe9EQeltim_mDg; u=501600759279498; device_id=24700f9f1986800ab4fcc880530dd0ed; Hm_lvt_1db88642e346389874251b5a1eded6e3=1600759286; _ga=GA1.2.2049292015.1600759388; _gid=GA1.2.391362708.1600759388; s=du11eogy79; __utma=1.2049292015.1600759388.1600759397.1600759397.1; __utmc=1; __utmz=1.1600759397.1.1.utmcsr=(direct)|utmccn=(direct)|utmcmd=(none); __utmt=1; __utmb=1.3.10.1600759397; Hm_lpvt_1db88642e346389874251b5a1eded6e3=1600759448'
}
headers = {
'Host': 'xueqiu.com',
'Pragma': 'no-cache',
'Referer': 'https://xueqiu.com/hq',
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/81.0.4044.138 Safari/537.36'
}
response = requests.get(url=url, params=params, headers=headers, cookies=cookies)
html_data = response.json()
data_list = html_data['data']['list']
for i in data_list:
dit = {}
dit['股票代碼'] = i['symbol']
dit['股票名稱'] = i['name']
dit['當(dāng)前價(jià)'] = i['current']
dit['漲跌額'] = i['chg']
dit['漲跌幅/%'] = i['percent']
dit['年初至今/%'] = i['current_year_percent']
dit['成交量'] = i['volume']
dit['成交額'] = i['amount']
dit['換手率/%'] = i['turnover_rate']
dit['市盈率TTM'] = i['pe_ttm']
dit['股息率/%'] = i['dividend_yield']
dit['市值'] = i['market_capital']
csv_writer.writerow(dit)
print(dit)
f.close()


數(shù)據(jù)分析代碼
c = (
Bar()
.add_xaxis(list(df2['股票名稱'].values))
.add_yaxis("股票成交量情況", list(df2['成交量'].values))
.set_global_opts(
title_opts=opts.TitleOpts(title="成交量圖表 - Volume chart"),
datazoom_opts=opts.DataZoomOpts(),
)
.render("data.html")
)

以上就是Python爬取股票信息,并可視化數(shù)據(jù)的示例的詳細(xì)內(nèi)容,更多關(guān)于Python爬取股票信息的資料請關(guān)注腳本之家其它相關(guān)文章!
相關(guān)文章
使用Python開發(fā)windows GUI程序入門實(shí)例
這篇文章主要介紹了使用Python開發(fā)windows GUI程序入門實(shí)例,本文著重介紹開發(fā)環(huán)境必須的軟件,代碼實(shí)現(xiàn)相對簡單,需要的朋友可以參考下2014-10-10
Python實(shí)現(xiàn)加解密,編碼解碼和進(jìn)制轉(zhuǎn)換(最全版)
這篇文章主要為大家詳細(xì)介紹了Python實(shí)現(xiàn)加解密、編碼解碼、進(jìn)制轉(zhuǎn)換、字符串轉(zhuǎn)換的最全版操作方法,文中的示例代碼講解詳細(xì),大家可以收藏一下2023-01-01
Python?gRPC流式通信協(xié)議詳細(xì)講解
這篇文章主要介紹了Python?gRPC流式通信協(xié)議,最近幾天在搞golang的grpc,跑通之后想用php作為客戶端調(diào)用一下grpc服務(wù),結(jié)果拉了,一個(gè)php的grpc服務(wù)安裝,搞了好幾天,總算搞定了2022-11-11
Python如何聲明以管理員方式運(yùn)行(附實(shí)戰(zhàn)案例)
由于Windows的安全機(jī)制,Python寫的腳本缺少了管理員權(quán)限,運(yùn)行就會(huì)受到一些限制,這篇文章主要介紹了Python如何聲明以管理員方式運(yùn)行的相關(guān)資料,文中通過代碼介紹的非常詳細(xì),需要的朋友可以參考下2025-04-04
Python Tkinter創(chuàng)建GUI應(yīng)用程序的示例
Tkinter提供了豐富的功能和靈活的接口,讓開發(fā)者能夠輕松地構(gòu)建出各種各樣的圖形用戶界面,本文介紹了使用Python的Tkinter庫創(chuàng)建圖形用戶界面GUI應(yīng)用程序,感興趣的可以了解一下2024-12-12
Python梯度提升庫XGBoost解決機(jī)器學(xué)習(xí)問題使用探究
XGBoost是一個(gè)流行的梯度提升庫,特別適用于解決各種機(jī)器學(xué)習(xí)問題,它在性能和速度上表現(xiàn)出色,常被用于分類、回歸、排序、推薦系統(tǒng)等應(yīng)用,本文將介紹XGBoost的基本原理、核心功能以及一些詳細(xì)的示例代碼2024-01-01
pytorch模型存儲(chǔ)的2種實(shí)現(xiàn)方法
今天小編就為大家分享一篇pytorch模型存儲(chǔ)的2種實(shí)現(xiàn)方法,具有很好的參考價(jià)值,希望對大家有所幫助。一起跟隨小編過來看看吧2020-02-02

