如何讓python的運行速度得到提升
python一直被病垢運行速度太慢,但是實際上python的執(zhí)行效率并不慢,慢的是python用的解釋器Cpython運行效率太差。
“一行代碼讓python的運行速度提高100倍”這絕不是嘩眾取寵的論調。
我們來看一下這個最簡單的例子,從1一直累加到1億。
最原始的代碼:
import time
def foo(x,y):
tt = time.time()
s = 0
for i in range(x,y):
s += i
print('Time used: {} sec'.format(time.time()-tt))
return s
print(foo(1,100000000))
結果
Time used: 6.779874801635742 sec 4999999950000000
是不是快了100多倍呢?
那么下面就分享一下“為啥numba庫的jit模塊那么牛掰?”
NumPy的創(chuàng)始人Travis Oliphant在離開Enthought之后,創(chuàng)建了CONTINUUM,致力于將Python大數據處理方面的應用。最近推出的Numba項目能夠將處理NumPy數組的Python函數JIT編譯為機器碼執(zhí)行,從而上百倍的提高程序的運算速度。
Numba項目的主頁上有Linux下的詳細安裝步驟。編譯LLVM需要花一些時間。
Windows用戶可以從Unofficial Windows Binaries for Python Extension Packages下載安裝LLVMPy、meta和numba等幾個擴展庫。
下面我們看一個例子:
import numba as nb
from numba import jit
@jit('f8(f8[:])')
def sum1d(array):
s = 0.0
n = array.shape[0]
for i in range(n):
s += array[i]
return s
import numpy as np
array = np.random.random(10000)
%timeit sum1d(array)
%timeit np.sum(array)
%timeit sum(array)
10000 loops, best of 3: 38.9 us per loop
10000 loops, best of 3: 32.3 us per loop
100 loops, best of 3: 12.4 ms per loop
numba中提供了一些修飾器,它們可以將其修飾的函數JIT編譯成機器碼函數,并返回一個可在Python中調用機器碼的包裝對象。為了能將Python函數編譯成能高速執(zhí)行的機器碼,我們需要告訴JIT編譯器函數的各個參數和返回值的類型。我們可以通過多種方式指定類型信息,在上面的例子中,類型信息由一個字符串'f8(f8[:])'指定。其中'f8'表示8個字節(jié)雙精度浮點數,括號前面的'f8'表示返回值類型,括號里的表示參數類型,'[:]'表示一維數組。因此整個類型字符串表示sum1d()是一個參數為雙精度浮點數的一維數組,返回值是一個雙精度浮點數。
內容擴展:
Python運行速度提升
相比較C,C++,python一直被抱怨運行速度很慢,實際上python的執(zhí)行效率并不慢,而是解釋器Cpython運行效率很差。
通過使用numba庫的jit可以讓python的運行速度提高百倍以上。
同諾簡單累加,相乘的例子,可以看出。
#!/usr/bin/env python
# encoding: utf-8
'''
@author: Victor
@Company:華中科技大學電氣學院聚變與等離子研究所
@version: V1.0
@contact: 1650996069@qq.com 2018--2020
@software: PyCharm2018
@file: quickPython3.py
@time: 2018/9/21 20:54
@desc:使用numba的jit是python代碼運行速度提高100倍左右
'''
'''平常運行'''
import time
def add(x,y):
tt = time.time()
s = 0
for i in range(x,y):
s += i
print('The time used: {} seconds'.format(time.time()-tt))
return s
add(1,100000000)
##########結果###############
# D:\Python3\python.exe D:/Pycharm2018Works/InsteringPython3/SomeBasics/quickPython3.py
# The time used: 6.712835788726807 seconds
# Process finished with exit code 0
'''調用numba運行'''
import time
from numba import jit
@jit
def add(x,y):
tt = time.time()
s = 0
for i in range(x,y):
s += i
print('The time used: {} seconds'.format(time.time()-tt))
return s
add(1,100000000)
##########結果###############
# D:\Python3\python.exe D:/Pycharm2018Works/InsteringPython3/SomeBasics/quickPython3.py
# The time used: 0.06396007537841797 seconds
#
# Process finished with exit code 0
Numba模塊能夠將處理NumPy數組的Python函數JIT編譯為機器碼執(zhí)行,從而上百倍的提高程序的運算速度。
相關文章
Python Numpy數組擴展repeat和tile使用實例解析
這篇文章主要介紹了Python Numpy數組擴展repeat和tile使用實例解析,文中通過示例代碼介紹的非常詳細,對大家的學習或者工作具有一定的參考學習價值,需要的朋友可以參考下2019-12-12

