keras 模型參數(shù),模型保存,中間結(jié)果輸出操作
我就廢話不多說了,大家還是直接看代碼吧~
'''
Created on 2018-4-16
'''
import keras
from keras.models import Sequential
from keras.layers import Dense
from keras.models import Model
from keras.callbacks import ModelCheckpoint,Callback
import numpy as np
import tflearn
import tflearn.datasets.mnist as mnist
x_train, y_train, x_test, y_test = mnist.load_data(one_hot=True)
x_valid = x_test[:5000]
y_valid = y_test[:5000]
x_test = x_test[5000:]
y_test = y_test[5000:]
print(x_valid.shape)
print(x_test.shape)
model = Sequential()
model.add(Dense(units=64, activation='relu', input_dim=784))
model.add(Dense(units=10, activation='softmax'))
model.compile(loss='categorical_crossentropy',
optimizer='sgd',
metrics=['accuracy'])
filepath = 'D:\\machineTest\\model-ep{epoch:03d}-loss{loss:.3f}-val_loss{val_loss:.3f}.h5'
# filepath = 'D:\\machineTest\\model-ep{epoch:03d}-loss{loss:.3f}.h5'
checkpoint = ModelCheckpoint(filepath, monitor='val_loss', verbose=1, save_best_only=True, mode='min')
print(model.get_config())
# [{'class_name': 'Dense', 'config': {'bias_regularizer': None, 'use_bias': True, 'kernel_regularizer': None, 'batch_input_shape': (None, 784), 'trainable': True, 'kernel_constraint': None, 'bias_constraint': None, 'kernel_initializer': {'class_name': 'VarianceScaling', 'config': {'scale': 1.0, 'distribution': 'uniform', 'mode': 'fan_avg', 'seed': None}}, 'activity_regularizer': None, 'units': 64, 'dtype': 'float32', 'bias_initializer': {'class_name': 'Zeros', 'config': {}}, 'activation': 'relu', 'name': 'dense_1'}}, {'class_name': 'Dense', 'config': {'bias_regularizer': None, 'use_bias': True, 'kernel_regularizer': None, 'bias_initializer': {'class_name': 'Zeros', 'config': {}}, 'kernel_constraint': None, 'bias_constraint': None, 'kernel_initializer': {'class_name': 'VarianceScaling', 'config': {'scale': 1.0, 'distribution': 'uniform', 'mode': 'fan_avg', 'seed': None}}, 'activity_regularizer': None, 'trainable': True, 'units': 10, 'activation': 'softmax', 'name': 'dense_2'}}]
# model.fit(x_train, y_train, epochs=1, batch_size=128, callbacks=[checkpoint],validation_data=(x_valid, y_valid))
model.fit(x_train, y_train, epochs=1,validation_data=(x_valid, y_valid),steps_per_epoch=10,validation_steps=1)
# score = model.evaluate(x_test, y_test, batch_size=128)
# print(score)
# #獲取模型結(jié)構(gòu)狀況
# model.summary()
# _________________________________________________________________
# Layer (type) Output Shape Param #
# =================================================================
# dense_1 (Dense) (None, 64) 50240(784*64+64(b))
# _________________________________________________________________
# dense_2 (Dense) (None, 10) 650(64*10 + 10 )
# =================================================================
# #根據(jù)下標(biāo)和名稱返回層對(duì)象
# layer = model.get_layer(index = 0)
# 獲取模型權(quán)重,設(shè)置權(quán)重model.set_weights()
weights = np.array(model.get_weights())
print(weights.shape)
# (4,)權(quán)重由4部分組成
print(weights[0].shape)
# (784, 64)dense_1 w1
print(weights[1].shape)
# (64,)dense_1 b1
print(weights[2].shape)
# (64, 10)dense_2 w2
print(weights[3].shape)
# (10,)dense_2 b2
# # 保存權(quán)重和加載權(quán)重
# model.save_weights("D:\\xxx\\weights.h5")
# model.load_weights("D:\\xxx\\weights.h5", by_name=False)#by_name=True,可以根據(jù)名字匹配和層載入權(quán)重
# 查看中間結(jié)果,必須要先聲明個(gè)函數(shù)式模型
dense1_layer_model = Model(inputs=model.input,outputs=model.get_layer('dense_1').output)
out = dense1_layer_model.predict(x_test)
print(out.shape)
# (5000, 64)
# 如果是函數(shù)式模型,則可以直接輸出
# import keras
# from keras.models import Model
# from keras.callbacks import ModelCheckpoint,Callback
# import numpy as np
# from keras.layers import Input,Conv2D,MaxPooling2D
# import cv2
#
# image = cv2.imread("D:\\machineTest\\falali.jpg")
# print(image.shape)
# cv2.imshow("1",image)
#
# # 第一層conv
# image = image.reshape([-1, 386, 580, 3])
# img_input = Input(shape=(386, 580, 3))
# x = Conv2D(64, (3, 3), activation='relu', padding='same', name='block1_conv1')(img_input)
# x = Conv2D(64, (3, 3), activation='relu', padding='same', name='block1_conv2')(x)
# x = MaxPooling2D((2, 2), strides=(2, 2), name='block1_pool')(x)
# model = Model(inputs=img_input, outputs=x)
# out = model.predict(image)
# print(out.shape)
# out = out.reshape(193, 290,64)
# image_conv1 = out[:,:,1].reshape(193, 290)
# image_conv2 = out[:,:,20].reshape(193, 290)
# image_conv3 = out[:,:,40].reshape(193, 290)
# image_conv4 = out[:,:,60].reshape(193, 290)
# cv2.imshow("conv1",image_conv1)
# cv2.imshow("conv2",image_conv2)
# cv2.imshow("conv3",image_conv3)
# cv2.imshow("conv4",image_conv4)
# cv2.waitKey(0)
中間結(jié)果輸出可以查看conv過之后的圖像:
原始圖像:

經(jīng)過一層conv以后,輸出其中4張圖片:




以上這篇keras 模型參數(shù),模型保存,中間結(jié)果輸出操作就是小編分享給大家的全部內(nèi)容了,希望能給大家一個(gè)參考,也希望大家多多支持腳本之家。
相關(guān)文章
Python 獲取ftp服務(wù)器文件時(shí)間的方法
今天小編就為大家分享一篇Python 獲取ftp服務(wù)器文件時(shí)間的方法,具有很好的參考價(jià)值,希望對(duì)大家有所幫助。一起跟隨小編過來看看吧2019-07-07
python代碼 if not x: 和 if x is not None: 和 if not x is None:使用
這篇文章主要介紹了python代碼 if not x: 和 if x is not None: 和 if not x is None:使用介紹,需要的朋友可以參考下2016-09-09
Python實(shí)現(xiàn)在線程里運(yùn)行scrapy的方法
這篇文章主要介紹了Python實(shí)現(xiàn)在線程里運(yùn)行scrapy的方法,涉及Python線程操作的技巧,非常具有實(shí)用價(jià)值,需要的朋友可以參考下2015-04-04
python list格式數(shù)據(jù)excel導(dǎo)出方法
今天小編就為大家分享一篇python list格式數(shù)據(jù)excel導(dǎo)出方法,具有很好的參考價(jià)值,希望對(duì)大家有所幫助。一起跟隨小編過來看看吧2018-10-10
Python實(shí)現(xiàn)對(duì)PPT文件進(jìn)行截圖操作的方法
這篇文章主要介紹了Python實(shí)現(xiàn)對(duì)PPT文件進(jìn)行截圖操作的方法,涉及Python操作幻燈片的相關(guān)技巧,非常具有實(shí)用價(jià)值,需要的朋友可以參考下2015-04-04
python中numpy.zeros(np.zeros)的使用方法
下面小編就為大家?guī)硪黄猵ython中numpy.zeros(np.zeros)的使用方法。小編覺得挺不錯(cuò)的,現(xiàn)在就分享給大家,也給大家做個(gè)參考。一起跟隨小編過來看看吧2017-11-11
Python批量加密Excel文件的實(shí)現(xiàn)示例
在日常工作中,保護(hù)敏感數(shù)據(jù)是至關(guān)重要的,本文主要介紹了Python批量加密Excel文件的實(shí)現(xiàn)示例,具有一定的參考價(jià)值,感興趣的可以了解一下2023-12-12

