利用scikitlearn畫ROC曲線實(shí)例
一個(gè)完整的數(shù)據(jù)挖掘模型,最后都要進(jìn)行模型評(píng)估,對(duì)于二分類來說,AUC,ROC這兩個(gè)指標(biāo)用到最多,所以 利用sklearn里面相應(yīng)的函數(shù)進(jìn)行模塊搭建。
具體實(shí)現(xiàn)的代碼可以參照下面博友的代碼,評(píng)估svm的分類指標(biāo)。注意里面的一些細(xì)節(jié)需要注意,一個(gè)是調(diào)用roc_curve 方法時(shí),指明目標(biāo)標(biāo)簽,否則會(huì)報(bào)錯(cuò)。
具體是這個(gè)參數(shù)的設(shè)置pos_label ,以前在unionbigdata實(shí)習(xí)時(shí)學(xué)到的。
重點(diǎn)是以下的代碼需要根據(jù)實(shí)際改寫:
mean_tpr = 0.0
mean_fpr = np.linspace(0, 1, 100)
all_tpr = []
y_target = np.r_[train_y,test_y]
cv = StratifiedKFold(y_target, n_folds=6)
#畫ROC曲線和計(jì)算AUC
fpr, tpr, thresholds = roc_curve(test_y, predict,pos_label = 2)##指定正例標(biāo)簽,pos_label = ###########在數(shù)之聯(lián)的時(shí)候?qū)W到的,要制定正例
mean_tpr += interp(mean_fpr, fpr, tpr) #對(duì)mean_tpr在mean_fpr處進(jìn)行插值,通過scipy包調(diào)用interp()函數(shù)
mean_tpr[0] = 0.0 #初始處為0
roc_auc = auc(fpr, tpr)
#畫圖,只需要plt.plot(fpr,tpr),變量roc_auc只是記錄auc的值,通過auc()函數(shù)能計(jì)算出來
plt.plot(fpr, tpr, lw=1, label='ROC %s (area = %0.3f)' % (classifier, roc_auc))
然后是博友的參考代碼:
# -*- coding: utf-8 -*-
"""
Created on Sun Apr 19 08:57:13 2015
@author: shifeng
"""
print(__doc__)
import numpy as np
from scipy import interp
import matplotlib.pyplot as plt
from sklearn import svm, datasets
from sklearn.metrics import roc_curve, auc
from sklearn.cross_validation import StratifiedKFold
###############################################################################
# Data IO and generation,導(dǎo)入iris數(shù)據(jù),做數(shù)據(jù)準(zhǔn)備
# import some data to play with
iris = datasets.load_iris()
X = iris.data
y = iris.target
X, y = X[y != 2], y[y != 2]#去掉了label為2,label只能二分,才可以。
n_samples, n_features = X.shape
# Add noisy features
random_state = np.random.RandomState(0)
X = np.c_[X, random_state.randn(n_samples, 200 * n_features)]
###############################################################################
# Classification and ROC analysis
#分類,做ROC分析
# Run classifier with cross-validation and plot ROC curves
#使用6折交叉驗(yàn)證,并且畫ROC曲線
cv = StratifiedKFold(y, n_folds=6)
classifier = svm.SVC(kernel='linear', probability=True,
random_state=random_state)#注意這里,probability=True,需要,不然預(yù)測的時(shí)候會(huì)出現(xiàn)異常。另外rbf核效果更好些。
mean_tpr = 0.0
mean_fpr = np.linspace(0, 1, 100)
all_tpr = []
for i, (train, test) in enumerate(cv):
#通過訓(xùn)練數(shù)據(jù),使用svm線性核建立模型,并對(duì)測試集進(jìn)行測試,求出預(yù)測得分
probas_ = classifier.fit(X[train], y[train]).predict_proba(X[test])
# print set(y[train]) #set([0,1]) 即label有兩個(gè)類別
# print len(X[train]),len(X[test]) #訓(xùn)練集有84個(gè),測試集有16個(gè)
# print "++",probas_ #predict_proba()函數(shù)輸出的是測試集在lael各類別上的置信度,
# #在哪個(gè)類別上的置信度高,則分為哪類
# Compute ROC curve and area the curve
#通過roc_curve()函數(shù),求出fpr和tpr,以及閾值
fpr, tpr, thresholds = roc_curve(y[test], probas_[:, 1])
mean_tpr += interp(mean_fpr, fpr, tpr) #對(duì)mean_tpr在mean_fpr處進(jìn)行插值,通過scipy包調(diào)用interp()函數(shù)
mean_tpr[0] = 0.0 #初始處為0
roc_auc = auc(fpr, tpr)
#畫圖,只需要plt.plot(fpr,tpr),變量roc_auc只是記錄auc的值,通過auc()函數(shù)能計(jì)算出來
plt.plot(fpr, tpr, lw=1, label='ROC fold %d (area = %0.2f)' % (i, roc_auc))
#畫對(duì)角線
plt.plot([0, 1], [0, 1], '--', color=(0.6, 0.6, 0.6), label='Luck')
mean_tpr /= len(cv) #在mean_fpr100個(gè)點(diǎn),每個(gè)點(diǎn)處插值插值多次取平均
mean_tpr[-1] = 1.0 #坐標(biāo)最后一個(gè)點(diǎn)為(1,1)
mean_auc = auc(mean_fpr, mean_tpr) #計(jì)算平均AUC值
#畫平均ROC曲線
#print mean_fpr,len(mean_fpr)
#print mean_tpr
plt.plot(mean_fpr, mean_tpr, 'k--',
label='Mean ROC (area = %0.2f)' % mean_auc, lw=2)
plt.xlim([-0.05, 1.05])
plt.ylim([-0.05, 1.05])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Receiver operating characteristic example')
plt.legend(loc="lower right")
plt.show()
補(bǔ)充知識(shí):批量進(jìn)行One-hot-encoder且進(jìn)行特征字段拼接,并完成模型訓(xùn)練demo
import org.apache.spark.ml.Pipeline
import org.apache.spark.ml.feature.{StringIndexer, OneHotEncoder}
import org.apache.spark.ml.feature.VectorAssembler
import ml.dmlc.xgboost4j.scala.spark.{XGBoostEstimator, XGBoostClassificationModel}
import org.apache.spark.ml.evaluation.BinaryClassificationEvaluator
import org.apache.spark.ml.tuning.{ParamGridBuilder, CrossValidator}
import org.apache.spark.ml.PipelineModel
val data = (spark.read.format("csv")
.option("sep", ",")
.option("inferSchema", "true")
.option("header", "true")
.load("/Affairs.csv"))
data.createOrReplaceTempView("res1")
val affairs = "case when affairs>0 then 1 else 0 end as affairs,"
val df = (spark.sql("select " + affairs +
"gender,age,yearsmarried,children,religiousness,education,occupation,rating" +
" from res1 "))
val categoricals = df.dtypes.filter(_._2 == "StringType") map (_._1)
val indexers = categoricals.map(
c => new StringIndexer().setInputCol(c).setOutputCol(s"${c}_idx")
)
val encoders = categoricals.map(
c => new OneHotEncoder().setInputCol(s"${c}_idx").setOutputCol(s"${c}_enc").setDropLast(false)
)
val colArray_enc = categoricals.map(x => x + "_enc")
val colArray_numeric = df.dtypes.filter(_._2 != "StringType") map (_._1)
val final_colArray = (colArray_numeric ++ colArray_enc).filter(!_.contains("affairs"))
val vectorAssembler = new VectorAssembler().setInputCols(final_colArray).setOutputCol("features")
/*
val pipeline = new Pipeline().setStages(indexers ++ encoders ++ Array(vectorAssembler))
pipeline.fit(df).transform(df)
*/
///
// Create an XGBoost Classifier
val xgb = new XGBoostEstimator(Map("num_class" -> 2, "num_rounds" -> 5, "objective" -> "binary:logistic", "booster" -> "gbtree")).setLabelCol("affairs").setFeaturesCol("features")
// XGBoost paramater grid
val xgbParamGrid = (new ParamGridBuilder()
.addGrid(xgb.round, Array(10))
.addGrid(xgb.maxDepth, Array(10,20))
.addGrid(xgb.minChildWeight, Array(0.1))
.addGrid(xgb.gamma, Array(0.1))
.addGrid(xgb.subSample, Array(0.8))
.addGrid(xgb.colSampleByTree, Array(0.90))
.addGrid(xgb.alpha, Array(0.0))
.addGrid(xgb.lambda, Array(0.6))
.addGrid(xgb.scalePosWeight, Array(0.1))
.addGrid(xgb.eta, Array(0.4))
.addGrid(xgb.boosterType, Array("gbtree"))
.addGrid(xgb.objective, Array("binary:logistic"))
.build())
// Create the XGBoost pipeline
val pipeline = new Pipeline().setStages(indexers ++ encoders ++ Array(vectorAssembler, xgb))
// Setup the binary classifier evaluator
val evaluator = (new BinaryClassificationEvaluator()
.setLabelCol("affairs")
.setRawPredictionCol("prediction")
.setMetricName("areaUnderROC"))
// Create the Cross Validation pipeline, using XGBoost as the estimator, the
// Binary Classification evaluator, and xgbParamGrid for hyperparameters
val cv = (new CrossValidator()
.setEstimator(pipeline)
.setEvaluator(evaluator)
.setEstimatorParamMaps(xgbParamGrid)
.setNumFolds(3)
.setSeed(0))
// Create the model by fitting the training data
val xgbModel = cv.fit(df)
// Test the data by scoring the model
val results = xgbModel.transform(df)
// Print out a copy of the parameters used by XGBoost, attention pipeline
(xgbModel.bestModel.asInstanceOf[PipelineModel]
.stages(5).asInstanceOf[XGBoostClassificationModel]
.extractParamMap().toSeq.foreach(println))
results.select("affairs","prediction").show
println("---Confusion Matrix------")
results.stat.crosstab("affairs","prediction").show()
// What was the overall accuracy of the model, using AUC
val auc = evaluator.evaluate(results)
println("----AUC--------")
println("auc="+auc)
以上這篇利用scikitlearn畫ROC曲線實(shí)例就是小編分享給大家的全部內(nèi)容了,希望能給大家一個(gè)參考,也希望大家多多支持腳本之家。
相關(guān)文章
Python腳本開發(fā)中的命令行參數(shù)及傳參示例詳解
這篇文章主要為大家介紹了Python腳本開發(fā)中的命令行參數(shù)及傳參示例詳解,有需要的朋友可以借鑒參考下,希望能夠有所幫助,祝大家多多進(jìn)步,早日升職加薪2022-07-07
python異步實(shí)現(xiàn)定時(shí)任務(wù)和周期任務(wù)的方法
今天小編就為大家分享一篇python異步實(shí)現(xiàn)定時(shí)任務(wù)和周期任務(wù)的方法,具有很好的參考價(jià)值,希望對(duì)大家有所幫助。一起跟隨小編過來看看吧2019-06-06
在PyCharm中安裝PyTorch、torchvision和OpenCV詳解
這篇文章主要介紹了在PyCharm中安裝PyTorch、torchvision和OpenCV方式,具有很好的參考價(jià)值,希望對(duì)大家有所幫助,如有錯(cuò)誤或未考慮完全的地方,望不吝賜教2025-04-04
Python分析學(xué)校四六級(jí)過關(guān)情況
這篇文章主要為大家詳細(xì)介紹了利用Python分析學(xué)校四六級(jí)過關(guān)情況,具有一定的參考價(jià)值,感興趣的小伙伴們可以參考一下2017-11-11
基于scrapy實(shí)現(xiàn)的簡單蜘蛛采集程序
這篇文章主要介紹了基于scrapy實(shí)現(xiàn)的簡單蜘蛛采集程序,實(shí)例分析了scrapy實(shí)現(xiàn)采集程序的技巧,具有一定參考借鑒價(jià)值,需要的朋友可以參考下2015-04-04
pycharm運(yùn)行出現(xiàn)ImportError:No module named的解決方法
今天小編就為大家分享一篇pycharm運(yùn)行出現(xiàn)ImportError:No module named的解決方法。具有很好的參考價(jià)值,希望對(duì)大家有所幫助。一起跟隨小編過來看看吧2018-10-10
一文帶你了解Python協(xié)程的詳細(xì)解釋以及例子
協(xié)程不是計(jì)算機(jī)提供的,計(jì)算機(jī)只提供:進(jìn)程、線程。協(xié)程是人工創(chuàng)造的一種用戶態(tài)切換的微進(jìn)程,使用一個(gè)線程去來回切換多個(gè)進(jìn)程,本文就來通過一些示例和大家詳細(xì)聊聊Python中的協(xié)程吧2023-03-03
python3實(shí)現(xiàn)指定目錄下文件sha256及文件大小統(tǒng)計(jì)
這篇文章主要為大家詳細(xì)介紹了python3實(shí)現(xiàn)指定目錄下文件sha256及文件大小統(tǒng)計(jì),具有一定的參考價(jià)值,感興趣的小伙伴們可以參考一下2019-02-02
Ruby使用eventmachine為HTTP服務(wù)器添加文件下載功能
這篇文章主要介紹了Ruby使用eventmachine為HTTP服務(wù)器添加文件下載功能的實(shí)例,同時(shí)作者也分享了Windows上eventmachine安裝報(bào)錯(cuò)問題的解決方法,需要的朋友可以參考下2016-04-04

