keras繪制acc和loss曲線圖實(shí)例
我就廢話不多說(shuō)了,大家還是直接看代碼吧!
#加載keras模塊
from __future__ import print_function
import numpy as np
np.random.seed(1337) # for reproducibility
import keras
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers.core import Dense, Dropout, Activation
from keras.optimizers import SGD, Adam, RMSprop
from keras.utils import np_utils
import matplotlib.pyplot as plt
%matplotlib inline
#寫一個(gè)LossHistory類,保存loss和acc
class LossHistory(keras.callbacks.Callback):
def on_train_begin(self, logs={}):
self.losses = {'batch':[], 'epoch':[]}
self.accuracy = {'batch':[], 'epoch':[]}
self.val_loss = {'batch':[], 'epoch':[]}
self.val_acc = {'batch':[], 'epoch':[]}
def on_batch_end(self, batch, logs={}):
self.losses['batch'].append(logs.get('loss'))
self.accuracy['batch'].append(logs.get('acc'))
self.val_loss['batch'].append(logs.get('val_loss'))
self.val_acc['batch'].append(logs.get('val_acc'))
def on_epoch_end(self, batch, logs={}):
self.losses['epoch'].append(logs.get('loss'))
self.accuracy['epoch'].append(logs.get('acc'))
self.val_loss['epoch'].append(logs.get('val_loss'))
self.val_acc['epoch'].append(logs.get('val_acc'))
def loss_plot(self, loss_type):
iters = range(len(self.losses[loss_type]))
plt.figure()
# acc
plt.plot(iters, self.accuracy[loss_type], 'r', label='train acc')
# loss
plt.plot(iters, self.losses[loss_type], 'g', label='train loss')
if loss_type == 'epoch':
# val_acc
plt.plot(iters, self.val_acc[loss_type], 'b', label='val acc')
# val_loss
plt.plot(iters, self.val_loss[loss_type], 'k', label='val loss')
plt.grid(True)
plt.xlabel(loss_type)
plt.ylabel('acc-loss')
plt.legend(loc="upper right")
plt.show()
#變量初始化
batch_size = 128
nb_classes = 10
nb_epoch = 20
# the data, shuffled and split between train and test sets
(X_train, y_train), (X_test, y_test) = mnist.load_data()
X_train = X_train.reshape(60000, 784)
X_test = X_test.reshape(10000, 784)
X_train = X_train.astype('float32')
X_test = X_test.astype('float32')
X_train /= 255
X_test /= 255
print(X_train.shape[0], 'train samples')
print(X_test.shape[0], 'test samples')
# convert class vectors to binary class matrices
Y_train = np_utils.to_categorical(y_train, nb_classes)
Y_test = np_utils.to_categorical(y_test, nb_classes)
#建立模型 使用Sequential()
model = Sequential()
model.add(Dense(512, input_shape=(784,)))
model.add(Activation('relu'))
model.add(Dropout(0.2))
model.add(Dense(512))
model.add(Activation('relu'))
model.add(Dropout(0.2))
model.add(Dense(10))
model.add(Activation('softmax'))
#打印模型
model.summary()
#訓(xùn)練與評(píng)估
#編譯模型
model.compile(loss='categorical_crossentropy',
optimizer=RMSprop(),
metrics=['accuracy'])
#創(chuàng)建一個(gè)實(shí)例history
history = LossHistory()
#迭代訓(xùn)練(注意這個(gè)地方要加入callbacks)
model.fit(X_train, Y_train,
batch_size=batch_size, nb_epoch=nb_epoch,
verbose=1,
validation_data=(X_test, Y_test),
callbacks=[history])
#模型評(píng)估
score = model.evaluate(X_test, Y_test, verbose=0)
print('Test score:', score[0])
print('Test accuracy:', score[1])
#繪制acc-loss曲線
history.loss_plot('epoch')

補(bǔ)充知識(shí):keras中自定義驗(yàn)證集的性能評(píng)估(ROC,AUC)
在keras中自帶的性能評(píng)估有準(zhǔn)確性以及l(fā)oss,當(dāng)需要以auc作為評(píng)價(jià)驗(yàn)證集的好壞時(shí),就得自己寫個(gè)評(píng)價(jià)函數(shù)了:
from sklearn.metrics import roc_auc_score from keras import backend as K # AUC for a binary classifier def auc(y_true, y_pred): ptas = tf.stack([binary_PTA(y_true,y_pred,k) for k in np.linspace(0, 1, 1000)],axis=0) pfas = tf.stack([binary_PFA(y_true,y_pred,k) for k in np.linspace(0, 1, 1000)],axis=0) pfas = tf.concat([tf.ones((1,)) ,pfas],axis=0) binSizes = -(pfas[1:]-pfas[:-1]) s = ptas*binSizes return K.sum(s, axis=0) #------------------------------------------------------------------------------------ # PFA, prob false alert for binary classifier def binary_PFA(y_true, y_pred, threshold=K.variable(value=0.5)): y_pred = K.cast(y_pred >= threshold, 'float32') # N = total number of negative labels N = K.sum(1 - y_true) # FP = total number of false alerts, alerts from the negative class labels FP = K.sum(y_pred - y_pred * y_true) return FP/N #----------------------------------------------------------------------------------- # P_TA prob true alerts for binary classifier def binary_PTA(y_true, y_pred, threshold=K.variable(value=0.5)): y_pred = K.cast(y_pred >= threshold, 'float32') # P = total number of positive labels P = K.sum(y_true) # TP = total number of correct alerts, alerts from the positive class labels TP = K.sum(y_pred * y_true) return TP/P #接著在模型的compile中設(shè)置metrics #如下例子,我用的是RNN做分類
from keras.models import Sequential
from keras.layers import Dense, Dropout
import keras
from keras.layers import GRU
model = Sequential()
model.add(keras.layers.core.Masking(mask_value=0., input_shape=(max_lenth, max_features))) #masking用于變長(zhǎng)序列輸入
model.add(GRU(units=n_hidden_units,activation='selu',kernel_initializer='orthogonal', recurrent_initializer='orthogonal',
bias_initializer='zeros', kernel_regularizer=regularizers.l2(0.01), recurrent_regularizer=regularizers.l2(0.01),
bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, recurrent_constraint=None,
bias_constraint=None, dropout=0.5, recurrent_dropout=0.0, implementation=1, return_sequences=False,
return_state=False, go_backwards=False, stateful=False, unroll=False))
model.add(Dropout(0.5))
model.add(Dense(1, activation='sigmoid'))
model.compile(loss='binary_crossentropy',
optimizer='adam',
metrics=[auc]) #寫入自定義評(píng)價(jià)函數(shù)
接下來(lái)就自己作預(yù)測(cè)了...
方法二:
from sklearn.metrics import roc_auc_score
import keras
class RocAucMetricCallback(keras.callbacks.Callback):
def __init__(self, predict_batch_size=1024, include_on_batch=False):
super(RocAucMetricCallback, self).__init__()
self.predict_batch_size=predict_batch_size
self.include_on_batch=include_on_batch
def on_batch_begin(self, batch, logs={}):
pass
def on_batch_end(self, batch, logs={}):
if(self.include_on_batch):
logs['roc_auc_val']=float('-inf')
if(self.validation_data):
logs['roc_auc_val']=roc_auc_score(self.validation_data[1],
self.model.predict(self.validation_data[0],
batch_size=self.predict_batch_size))
def on_train_begin(self, logs={}):
if not ('roc_auc_val' in self.params['metrics']):
self.params['metrics'].append('roc_auc_val')
def on_train_end(self, logs={}):
pass
def on_epoch_begin(self, epoch, logs={}):
pass
def on_epoch_end(self, epoch, logs={}):
logs['roc_auc_val']=float('-inf')
if(self.validation_data):
logs['roc_auc_val']=roc_auc_score(self.validation_data[1],
self.model.predict(self.validation_data[0],
batch_size=self.predict_batch_size))
import numpy as np
import tensorflow as tf
from keras.models import Sequential
from keras.layers import Dense, Dropout
from keras.layers import GRU
import keras
from keras.callbacks import EarlyStopping
from sklearn.metrics import roc_auc_score
from keras import metrics
cb = [
my_callbacks.RocAucMetricCallback(), # include it before EarlyStopping!
EarlyStopping(monitor='roc_auc_val',patience=300, verbose=2,mode='max')
]
model = Sequential()
model.add(keras.layers.core.Masking(mask_value=0., input_shape=(max_lenth, max_features)))
# model.add(Embedding(input_dim=max_features+1, output_dim=64,mask_zero=True))
model.add(GRU(units=n_hidden_units,activation='selu',kernel_initializer='orthogonal', recurrent_initializer='orthogonal',
bias_initializer='zeros', kernel_regularizer=regularizers.l2(0.01), recurrent_regularizer=regularizers.l2(0.01),
bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, recurrent_constraint=None,
bias_constraint=None, dropout=0.5, recurrent_dropout=0.0, implementation=1, return_sequences=False,
return_state=False, go_backwards=False, stateful=False, unroll=False)) #input_shape=(max_lenth, max_features),
model.add(Dropout(0.5))
model.add(Dense(1, activation='sigmoid'))
model.compile(loss='binary_crossentropy',
optimizer='adam',
metrics=[auc]) #這里就可以寫其他評(píng)估標(biāo)準(zhǔn)
model.fit(x_train, y_train, batch_size=train_batch_size, epochs=training_iters, verbose=2,
callbacks=cb,validation_split=0.2,
shuffle=True, class_weight=None, sample_weight=None, initial_epoch=0)
親測(cè)有效!
以上這篇keras繪制acc和loss曲線圖實(shí)例就是小編分享給大家的全部?jī)?nèi)容了,希望能給大家一個(gè)參考,也希望大家多多支持腳本之家。
相關(guān)文章
python刪除列表元素del,pop(),remove()及clear()
這篇文章主要介紹了python刪除列表元素del,pop(),remove()及clear(),列表元素能增加就可以刪除,這里要給大家介紹的是刪除列表元素,具有一定的參考價(jià)值,需要的小伙伴可以參考一下2022-03-03
Python中ROS和OpenCV結(jié)合處理圖像問(wèn)題
ROS通過(guò)一個(gè)叫CvBridge的功能包,將獲取的圖像數(shù)據(jù)轉(zhuǎn)換成OpenCV的格式,OpenCV處理之后,傳回給ROS進(jìn)行圖像顯示(應(yīng)用),這篇文章主要介紹了Python中ROS和OpenCV結(jié)合處理圖像問(wèn)題,需要的朋友可以參考下2022-06-06
Tensorflow讀取并輸出已保存模型的權(quán)重?cái)?shù)值方式
今天小編就為大家分享一篇Tensorflow讀取并輸出已保存模型的權(quán)重?cái)?shù)值方式,具有很好的參考價(jià)值,希望對(duì)大家有所幫助。一起跟隨小編過(guò)來(lái)看不看2020-01-01
Python-torch?之torch.clamp()?函數(shù)解析
torch.clamp()函數(shù)用于對(duì)輸入張量進(jìn)行截?cái)嗖僮鳎瑢埩恐械拿總€(gè)元素限制在指定的范圍內(nèi),這篇文章主要介紹了Python torch之torch.clamp()函數(shù),需要的朋友可以參考下2023-05-05
Python函數(shù)的作用域及內(nèi)置函數(shù)詳解
這篇文章主要介紹了python函數(shù)的作用域及內(nèi)置函數(shù)詳解,文中通過(guò)示例代碼介紹的非常詳細(xì),對(duì)大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價(jià)值,需要的朋友可以參考下2021-09-09
python網(wǎng)絡(luò)編程學(xué)習(xí)筆記(一)
這篇文章主要介紹了python網(wǎng)絡(luò)編程基礎(chǔ)知識(shí),需要的朋友可以參考下2014-06-06
Pytorch torch.repeat_interleave()用法示例詳解
torch.repeat_interleave() 是 PyTorch 中的一個(gè)函數(shù),用于按指定的方式重復(fù)張量中的元素,這篇文章主要介紹了Pytorch torch.repeat_interleave()用法示例詳解,需要的朋友可以參考下2024-01-01
Python腳本開發(fā)漏洞的批量搜索與利用(GlassFish?任意文件讀取)
這篇文章主要介紹了Python?開發(fā)漏洞的批量搜索與利用(GlassFish?任意文件讀取),主要包括python開發(fā)學(xué)習(xí)的意義及測(cè)試漏洞是否存在的步驟,需要的朋友可以參考下2022-05-05

