tensorflow實(shí)現(xiàn)殘差網(wǎng)絡(luò)方式(mnist數(shù)據(jù)集)
介紹
殘差網(wǎng)絡(luò)是何凱明大神的神作,效果非常好,深度可以達(dá)到1000層。但是,其實(shí)現(xiàn)起來并沒有那末難,在這里以tensorflow作為框架,實(shí)現(xiàn)基于mnist數(shù)據(jù)集上的殘差網(wǎng)絡(luò),當(dāng)然只是比較淺層的。
如下圖所示:

實(shí)線的Connection部分,表示通道相同,如上圖的第一個(gè)粉色矩形和第三個(gè)粉色矩形,都是3x3x64的特征圖,由于通道相同,所以采用計(jì)算方式為H(x)=F(x)+x
虛線的的Connection部分,表示通道不同,如上圖的第一個(gè)綠色矩形和第三個(gè)綠色矩形,分別是3x3x64和3x3x128的特征圖,通道不同,采用的計(jì)算方式為H(x)=F(x)+Wx,其中W是卷積操作,用來調(diào)整x維度的。
根據(jù)輸入和輸出尺寸是否相同,又分為identity_block和conv_block,每種block有上圖兩種模式,三卷積和二卷積,三卷積速度更快些,因此在這里選擇該種方式。
具體實(shí)現(xiàn)見如下代碼:
#tensorflow基于mnist數(shù)據(jù)集上的VGG11網(wǎng)絡(luò),可以直接運(yùn)行
from tensorflow.examples.tutorials.mnist import input_data
import tensorflow as tf
#tensorflow基于mnist實(shí)現(xiàn)VGG11
mnist = input_data.read_data_sets('MNIST_data', one_hot=True)
#x=mnist.train.images
#y=mnist.train.labels
#X=mnist.test.images
#Y=mnist.test.labels
x = tf.placeholder(tf.float32, [None,784])
y = tf.placeholder(tf.float32, [None, 10])
sess = tf.InteractiveSession()
def weight_variable(shape):
#這里是構(gòu)建初始變量
initial = tf.truncated_normal(shape, mean=0,stddev=0.1)
#創(chuàng)建變量
return tf.Variable(initial)
def bias_variable(shape):
initial = tf.constant(0.1, shape=shape)
return tf.Variable(initial)
#在這里定義殘差網(wǎng)絡(luò)的id_block塊,此時(shí)輸入和輸出維度相同
def identity_block(X_input, kernel_size, in_filter, out_filters, stage, block):
"""
Implementation of the identity block as defined in Figure 3
Arguments:
X -- input tensor of shape (m, n_H_prev, n_W_prev, n_C_prev)
kernel_size -- integer, specifying the shape of the middle CONV's window for the main path
filters -- python list of integers, defining the number of filters in the CONV layers of the main path
stage -- integer, used to name the layers, depending on their position in the network
block -- string/character, used to name the layers, depending on their position in the network
training -- train or test
Returns:
X -- output of the identity block, tensor of shape (n_H, n_W, n_C)
"""
# defining name basis
block_name = 'res' + str(stage) + block
f1, f2, f3 = out_filters
with tf.variable_scope(block_name):
X_shortcut = X_input
#first
W_conv1 = weight_variable([1, 1, in_filter, f1])
X = tf.nn.conv2d(X_input, W_conv1, strides=[1, 1, 1, 1], padding='SAME')
b_conv1 = bias_variable([f1])
X = tf.nn.relu(X+ b_conv1)
#second
W_conv2 = weight_variable([kernel_size, kernel_size, f1, f2])
X = tf.nn.conv2d(X, W_conv2, strides=[1, 1, 1, 1], padding='SAME')
b_conv2 = bias_variable([f2])
X = tf.nn.relu(X+ b_conv2)
#third
W_conv3 = weight_variable([1, 1, f2, f3])
X = tf.nn.conv2d(X, W_conv3, strides=[1, 1, 1, 1], padding='SAME')
b_conv3 = bias_variable([f3])
X = tf.nn.relu(X+ b_conv3)
#final step
add = tf.add(X, X_shortcut)
b_conv_fin = bias_variable([f3])
add_result = tf.nn.relu(add+b_conv_fin)
return add_result
#這里定義conv_block模塊,由于該模塊定義時(shí)輸入和輸出尺度不同,故需要進(jìn)行卷積操作來改變尺度,從而得以相加
def convolutional_block( X_input, kernel_size, in_filter,
out_filters, stage, block, stride=2):
"""
Implementation of the convolutional block as defined in Figure 4
Arguments:
X -- input tensor of shape (m, n_H_prev, n_W_prev, n_C_prev)
kernel_size -- integer, specifying the shape of the middle CONV's window for the main path
filters -- python list of integers, defining the number of filters in the CONV layers of the main path
stage -- integer, used to name the layers, depending on their position in the network
block -- string/character, used to name the layers, depending on their position in the network
training -- train or test
stride -- Integer, specifying the stride to be used
Returns:
X -- output of the convolutional block, tensor of shape (n_H, n_W, n_C)
"""
# defining name basis
block_name = 'res' + str(stage) + block
with tf.variable_scope(block_name):
f1, f2, f3 = out_filters
x_shortcut = X_input
#first
W_conv1 = weight_variable([1, 1, in_filter, f1])
X = tf.nn.conv2d(X_input, W_conv1,strides=[1, stride, stride, 1],padding='SAME')
b_conv1 = bias_variable([f1])
X = tf.nn.relu(X + b_conv1)
#second
W_conv2 =weight_variable([kernel_size, kernel_size, f1, f2])
X = tf.nn.conv2d(X, W_conv2, strides=[1,1,1,1], padding='SAME')
b_conv2 = bias_variable([f2])
X = tf.nn.relu(X+b_conv2)
#third
W_conv3 = weight_variable([1,1, f2,f3])
X = tf.nn.conv2d(X, W_conv3, strides=[1, 1, 1,1], padding='SAME')
b_conv3 = bias_variable([f3])
X = tf.nn.relu(X+b_conv3)
#shortcut path
W_shortcut =weight_variable([1, 1, in_filter, f3])
x_shortcut = tf.nn.conv2d(x_shortcut, W_shortcut, strides=[1, stride, stride, 1], padding='VALID')
#final
add = tf.add(x_shortcut, X)
#建立最后融合的權(quán)重
b_conv_fin = bias_variable([f3])
add_result = tf.nn.relu(add+ b_conv_fin)
return add_result
x = tf.reshape(x, [-1,28,28,1])
w_conv1 = weight_variable([2, 2, 1, 64])
x = tf.nn.conv2d(x, w_conv1, strides=[1, 2, 2, 1], padding='SAME')
b_conv1 = bias_variable([64])
x = tf.nn.relu(x+b_conv1)
#這里操作后變成14x14x64
x = tf.nn.max_pool(x, ksize=[1, 3, 3, 1],
strides=[1, 1, 1, 1], padding='SAME')
#stage 2
x = convolutional_block(X_input=x, kernel_size=3, in_filter=64, out_filters=[64, 64, 256], stage=2, block='a', stride=1)
#上述conv_block操作后,尺寸變?yōu)?4x14x256
x = identity_block(x, 3, 256, [64, 64, 256], stage=2, block='b' )
x = identity_block(x, 3, 256, [64, 64, 256], stage=2, block='c')
#上述操作后張量尺寸變成14x14x256
x = tf.nn.max_pool(x, [1, 2, 2, 1], strides=[1,2,2,1], padding='SAME')
#變成7x7x256
flat = tf.reshape(x, [-1,7*7*256])
w_fc1 = weight_variable([7 * 7 *256, 1024])
b_fc1 = bias_variable([1024])
h_fc1 = tf.nn.relu(tf.matmul(flat, w_fc1) + b_fc1)
keep_prob = tf.placeholder(tf.float32)
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
w_fc2 = weight_variable([1024, 10])
b_fc2 = bias_variable([10])
y_conv = tf.matmul(h_fc1_drop, w_fc2) + b_fc2
#建立損失函數(shù),在這里采用交叉熵函數(shù)
cross_entropy = tf.reduce_mean(
tf.nn.softmax_cross_entropy_with_logits(labels=y, logits=y_conv))
train_step = tf.train.AdamOptimizer(1e-3).minimize(cross_entropy)
correct_prediction = tf.equal(tf.argmax(y_conv,1), tf.argmax(y,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
#初始化變量
sess.run(tf.global_variables_initializer())
print("cuiwei")
for i in range(2000):
batch = mnist.train.next_batch(10)
if i%100 == 0:
train_accuracy = accuracy.eval(feed_dict={
x:batch[0], y: batch[1], keep_prob: 1.0})
print("step %d, training accuracy %g"%(i, train_accuracy))
train_step.run(feed_dict={x: batch[0], y: batch[1], keep_prob: 0.5})
以上這篇tensorflow實(shí)現(xiàn)殘差網(wǎng)絡(luò)方式(mnist數(shù)據(jù)集)就是小編分享給大家的全部?jī)?nèi)容了,希望能給大家一個(gè)參考,也希望大家多多支持腳本之家。
- 基于Tensorflow讀取MNIST數(shù)據(jù)集時(shí)網(wǎng)絡(luò)超時(shí)的解決方式
- 使用tensorflow實(shí)現(xiàn)VGG網(wǎng)絡(luò),訓(xùn)練mnist數(shù)據(jù)集方式
- TensorFlow2.X使用圖片制作簡(jiǎn)單的數(shù)據(jù)集訓(xùn)練模型
- C#使用TensorFlow.NET訓(xùn)練自己的數(shù)據(jù)集的方法
- TensorFlow車牌識(shí)別完整版代碼(含車牌數(shù)據(jù)集)
- TensorFlow基于MNIST數(shù)據(jù)集實(shí)現(xiàn)車牌識(shí)別(初步演示版)
- 詳解如何從TensorFlow的mnist數(shù)據(jù)集導(dǎo)出手寫體數(shù)字圖片
- tensorflow實(shí)現(xiàn)加載mnist數(shù)據(jù)集
- Tensorflow 訓(xùn)練自己的數(shù)據(jù)集將數(shù)據(jù)直接導(dǎo)入到內(nèi)存
- 詳解tensorflow訓(xùn)練自己的數(shù)據(jù)集實(shí)現(xiàn)CNN圖像分類
- Tensorflow之構(gòu)建自己的圖片數(shù)據(jù)集TFrecords的方法
- 如何從csv文件構(gòu)建Tensorflow的數(shù)據(jù)集
相關(guān)文章
Python強(qiáng)制子類重寫父類的兩種方法實(shí)現(xiàn)
在Python中,有時(shí)候我們希望某個(gè)類能夠被子類繼承并重寫其中的某些方法,本文主要介紹了Python強(qiáng)制子類重寫父類的兩種方法實(shí)現(xiàn),具有一定的參考價(jià)值,感興趣的可以了解一下2024-02-02
pandas DataFrame創(chuàng)建方法的方式
這篇文章主要介紹了pandas DataFrame創(chuàng)建方法的方式,文中通過示例代碼介紹的非常詳細(xì),對(duì)大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價(jià)值,需要的朋友們下面隨著小編來一起學(xué)習(xí)學(xué)習(xí)吧2019-08-08
詳解使用python crontab設(shè)置linux定時(shí)任務(wù)
本篇文章主要介紹了使用python crontab設(shè)置linux定時(shí)任務(wù),具有一定的參考價(jià)值,有需要的可以了解一下。2016-12-12
在python3中使用shuffle函數(shù)要注意的地方
今天小編就為大家分享一篇在python3中使用shuffle函數(shù)要注意的地方,具有很好的參考價(jià)值,希望對(duì)大家有所幫助。一起跟隨小編過來看看吧2020-02-02
基于python的selenium兩種文件上傳操作實(shí)現(xiàn)詳解
這篇文章主要介紹了基于python的selenium兩種文件上傳操作實(shí)現(xiàn)詳解,文中通過示例代碼介紹的非常詳細(xì),對(duì)大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價(jià)值,需要的朋友可以參考下2019-09-09
Python with語句上下文管理器兩種實(shí)現(xiàn)方法分析
這篇文章主要介紹了Python with語句上下文管理器兩種實(shí)現(xiàn)方法,結(jié)合實(shí)例形式較為詳細(xì)的分析了Python上下文管理器的相關(guān)概念、功能、使用方法及相關(guān)操作注意事項(xiàng),需要的朋友可以參考下2018-02-02
Python開發(fā)之身份證驗(yàn)證庫id_validator驗(yàn)證身份證號(hào)合法性及根據(jù)身份證號(hào)返回住址年齡等信息
這篇文章主要介紹了Python開發(fā)之身份證驗(yàn)證庫id_validator驗(yàn)證身份證號(hào)合法性及Python解析身份證號(hào),根據(jù)身份證號(hào)返回住址年齡等信息,需要的朋友可以參考下2020-03-03

