使用PyTorch將文件夾下的圖片分為訓(xùn)練集和驗(yàn)證集實(shí)例
PyTorch提供了ImageFolder的類來(lái)加載文件結(jié)構(gòu)如下的圖片數(shù)據(jù)集:
root/dog/xxx.png root/dog/xxy.png root/dog/xxz.png root/cat/123.png root/cat/nsdf3.png root/cat/asd932_.png
使用這個(gè)類的問(wèn)題在于無(wú)法將訓(xùn)練集(training dataset)和驗(yàn)證集(validation dataset)分開(kāi)。我寫(xiě)了兩個(gè)類來(lái)完成這個(gè)工作。
import os
import torch
from torch.utils.data import Dataset, DataLoader
from torchvision.transforms import ToTensor, Resize, Compose
from PIL import Image
from sklearn.model_selection import train_test_split
class ImageFolderSplitter:
# images should be placed in folders like:
# --root
# ----root\dogs
# ----root\dogs\image1.png
# ----root\dogs\image2.png
# ----root\cats
# ----root\cats\image1.png
# ----root\cats\image2.png
# path: the root of the image folder
def __init__(self, path, train_size = 0.8):
self.path = path
self.train_size = train_size
self.class2num = {}
self.num2class = {}
self.class_nums = {}
self.data_x_path = []
self.data_y_label = []
self.x_train = []
self.x_valid = []
self.y_train = []
self.y_valid = []
for root, dirs, files in os.walk(path):
if len(files) == 0 and len(dirs) > 1:
for i, dir1 in enumerate(dirs):
self.num2class[i] = dir1
self.class2num[dir1] = i
elif len(files) > 1 and len(dirs) == 0:
category = ""
for key in self.class2num.keys():
if key in root:
category = key
break
label = self.class2num[category]
self.class_nums[label] = 0
for file1 in files:
self.data_x_path.append(os.path.join(root, file1))
self.data_y_label.append(label)
self.class_nums[label] += 1
else:
raise RuntimeError("please check the folder structure!")
self.x_train, self.x_valid, self.y_train, self.y_valid = train_test_split(self.data_x_path, self.data_y_label, shuffle = True, train_size = self.train_size)
def getTrainingDataset(self):
return self.x_train, self.y_train
def getValidationDataset(self):
return self.x_valid, self.y_valid
class DatasetFromFilename(Dataset):
# x: a list of image file full path
# y: a list of image categories
def __init__(self, x, y, transforms = None):
super(DatasetFromFilename, self).__init__()
self.x = x
self.y = y
if transforms == None:
self.transforms = ToTensor()
else:
self.transforms = transforms
def __len__(self):
return len(self.x)
def __getitem__(self, idx):
img = Image.open(self.x[idx])
img = img.convert("RGB")
return self.transforms(img), torch.tensor([[self.y[idx]]])
# test code
# splitter = ImageFolderSplitter("for_test")
# transforms = Compose([Resize((51, 51)), ToTensor()])
# x_train, y_train = splitter.getTrainingDataset()
# training_dataset = DatasetFromFilename(x_train, y_train, transforms=transforms)
# training_dataloader = DataLoader(training_dataset, batch_size=2, shuffle=True)
# x_valid, y_valid = splitter.getValidationDataset()
# validation_dataset = DatasetFromFilename(x_valid, y_valid, transforms=transforms)
# validation_dataloader = DataLoader(validation_dataset, batch_size=2, shuffle=True)
# for x, y in training_dataloader:
# print(x.shape, y.shape)
更多的代碼可以在我的Github reop下找到。
相關(guān)文章
python如何解析復(fù)雜sql,實(shí)現(xiàn)數(shù)據(jù)庫(kù)和表的提取的實(shí)例剖析
這篇文章主要介紹了python如何解析復(fù)雜sql,實(shí)現(xiàn)數(shù)據(jù)庫(kù)和表的提取的實(shí)例剖析,具有很好的參考價(jià)值,希望對(duì)大家有所幫助。一起跟隨小編過(guò)來(lái)看看吧2020-05-05
Python3使用requests登錄人人影視網(wǎng)站的方法
通過(guò)本文給大家介紹python代碼實(shí)現(xiàn)使用requests登錄網(wǎng)站的過(guò)程。非常具有參考價(jià)值,感興趣的朋友一起學(xué)習(xí)吧2016-05-05
Python基礎(chǔ)教程之增加和去除數(shù)字的千位分隔符
千位分隔符其實(shí)就是數(shù)字中的逗號(hào),下面這篇文章主要給大家介紹了關(guān)于Python基礎(chǔ)教程之增加和去除數(shù)字的千位分隔符,文中通過(guò)實(shí)例代碼介紹的非常詳細(xì),需要的朋友可以參考下2023-01-01
python -v 報(bào)錯(cuò)問(wèn)題的解決方法
在本篇文章里小編給大家整理了關(guān)于python -v 報(bào)錯(cuò)問(wèn)題的解決方法及相關(guān)知識(shí)點(diǎn),有興趣的朋友們可以學(xué)習(xí)下。2020-09-09
Windows下安裝python2.7及科學(xué)計(jì)算套裝
這篇文章主要向大家介紹的是在windows系統(tǒng)下安裝python 2.7以及numpy安裝、six安裝、dateutil安裝、pyparsing安裝、matplotlib安裝和scipy安裝的方法,分享給大家,需要的小伙伴可以參考下,相對(duì)來(lái)說(shuō),windows下的安裝還是比較簡(jiǎn)單的。2015-03-03
python中3種等待元素出現(xiàn)的方法總結(jié)
發(fā)現(xiàn)太多人不會(huì)用等待了,小編今天實(shí)在是忍不住要給大家講講等待的必要性,下面這篇文章主要給大家介紹了關(guān)于python中3種等待元素出現(xiàn)的方法,需要的朋友可以參考下2022-03-03
Python confluent kafka客戶端配置kerberos認(rèn)證流程詳解
這篇文章主要介紹了Python confluent kafka客戶端配置kerberos認(rèn)證流程詳解,文中通過(guò)示例代碼介紹的非常詳細(xì),對(duì)大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價(jià)值,需要的朋友可以參考下2020-10-10

