python 實(shí)現(xiàn)檢驗(yàn)33品種數(shù)據(jù)是否是正態(tài)分布
我就廢話不多說(shuō)了,直接上代碼吧!
# -*- coding: utf-8 -*-
"""
Created on Thu Jun 22 17:03:16 2017
@author: yunjinqi
E-mail:yunjinqi@qq.com
Differentiate yourself in the world from anyone else.
"""
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import statsmodels.tsa.stattools as ts
import statsmodels.api as sm
from statsmodels.graphics.api import qqplot
from statsmodels.sandbox.stats.runs import runstest_1samp
import scipy.stats as sts
namelist=['cu','al','zn','pb','sn','au','ag','rb','hc','bu','ru','m9','y9','a9',
'p9','c9','cs','jd','l9','v9','pp','j9','jm','i9','sr','cf',
'zc','fg','ta','ma','oi','rm','sm']
j=0
for i in namelist:
filename='C:/Users/HXWD/Desktop/數(shù)據(jù)/'+i+'.csv'
data=pd.read_csv(filename,encoding='gbk')
data.columns=['date','open','high','low','close','amt','opi']
data.head()
data=np.log(data['close'])
r=data-data.shift(1)
r=r.dropna()
#print(r)
rate = np.array(list(r))
print('品種{}數(shù)據(jù)長(zhǎng)度{}均值{}標(biāo)準(zhǔn)差{}方差{}偏度{}峰度{}'.format(i,len(rate),
rate.mean(),rate.std(),rate.var(),sts.skew(rate),
sts.kurtosis(rate)))
#結(jié)果 品種cu數(shù)據(jù)長(zhǎng)度4976均值0.00012152573153376814標(biāo)準(zhǔn)差0.014276535327917023方差0.0002038194609692628偏度-0.16028824462338614峰度2.642455989417427 品種al數(shù)據(jù)長(zhǎng)度5406均值-2.3195089066551237e-05標(biāo)準(zhǔn)差0.009053990835143359方差8.197475004285994e-05偏度-0.34748915595295604峰度5.083890815632417 品種zn數(shù)據(jù)長(zhǎng)度2455均值-0.00011823058103745542標(biāo)準(zhǔn)差0.016294570963077237方差0.00026551304287075983偏度-0.316153612624431峰度1.7208737518119293 品種pb數(shù)據(jù)長(zhǎng)度1482均值-9.866770650275384e-05標(biāo)準(zhǔn)差0.011417348325010642方差0.0001303558427746233偏度-0.21599833469407717峰度5.878332673854807 品種sn數(shù)據(jù)長(zhǎng)度510均值0.00034131697514080907標(biāo)準(zhǔn)差0.013690993291257949方差0.00018744329730127014偏度0.024808842588775293峰1.072347367872859 品種au數(shù)據(jù)長(zhǎng)度2231均值0.0001074021979121701標(biāo)準(zhǔn)差0.012100456199756058方差0.00014642104024221482偏度-0.361814930575112峰度4.110915875328322 品種ag數(shù)據(jù)長(zhǎng)度1209均值-0.0003262089978362889標(biāo)準(zhǔn)差0.014853094655086982方差0.00022061442083297348偏度-0.2248883178719188峰度4.296247290616826 品種rb數(shù)據(jù)長(zhǎng)度1966均值-6.984154093694264e-05標(biāo)準(zhǔn)差0.013462363746262961方差0.00018123523763669528偏度0.07827546016742666峰度5.198115698123077 品種hc數(shù)據(jù)長(zhǎng)度758均值-7.256339078572361e-05標(biāo)準(zhǔn)差0.01710980071993581方差0.000292745280675916偏度-0.08403481899486816峰度3.6250669416786323 品種bu數(shù)據(jù)長(zhǎng)度864均值-0.0006258998207218544標(biāo)準(zhǔn)差0.01716581014361468方差0.0002946650378866246偏度-0.41242405508236435峰度2.437556911829674 品種ru數(shù)據(jù)長(zhǎng)度4827均值5.17426767764321e-05標(biāo)準(zhǔn)差0.016747187916000945方差0.00028046830309384806偏度-0.1986573449586119峰度1.736876616149547 品種m9數(shù)據(jù)長(zhǎng)度4058均值8.873778774208505e-05標(biāo)準(zhǔn)差0.012812626470272115方差0.0001641633970667177偏度-0.12119836197638824峰度2.159984922606264 品種y9數(shù)據(jù)長(zhǎng)度2748均值4.985975458693667e-05標(biāo)準(zhǔn)差0.012855191360434762方差0.00016525594491339655偏度-0.33456507243405786峰度2.566586342814616 品種a9數(shù)據(jù)長(zhǎng)度5392均值9.732600802295795e-05標(biāo)準(zhǔn)差0.010601259945310599方差0.00011238671242804687偏度-0.08768586026629852峰度3.898562231789457 品種p9數(shù)據(jù)長(zhǎng)度2311均值-0.00021108840931287863標(biāo)準(zhǔn)差0.014588073181583774方差0.00021281187915124373偏度-0.2881364812318466峰度1.693401619226936 品種c9數(shù)據(jù)長(zhǎng)度3075均值0.00010060972262212708標(biāo)準(zhǔn)差0.007206853641314312方差5.1938739407325355e-05偏度-5.204419912904765e-05峰6.074899127691497 品種cs數(shù)據(jù)長(zhǎng)度573均值-0.0006465907683602394標(biāo)準(zhǔn)差0.011237570390237955方差0.00012628298827555283偏度0.10170996173895988峰度1.176384982024672 品種jd數(shù)據(jù)長(zhǎng)度847均值-9.035290965408637e-05標(biāo)準(zhǔn)差0.01167344224455134方差0.00013626925383687581偏度-0.0682866825422671峰度2.0899893901516133 品種l9數(shù)據(jù)長(zhǎng)度2370均值-0.00014710186232216803標(biāo)準(zhǔn)差0.014902467199956509方差0.00022208352864577958偏度-0.2105262196327885峰度1.8796065573836 品種v9數(shù)據(jù)長(zhǎng)度1927均值-5.190379527562386e-05標(biāo)準(zhǔn)差0.010437020362123387方差0.00010893139403937818偏度-0.050531345744352064峰度3.47595007264211 品種pp數(shù)據(jù)長(zhǎng)度773均值-0.0003789841804842144標(biāo)準(zhǔn)差0.01439578332841083方差0.00020723857763855122偏度0.05479337073436029峰度1.3397870170464232 品種j9數(shù)據(jù)長(zhǎng)度1468均值-0.00021854062264841954標(biāo)準(zhǔn)差0.01639429047795793方差0.000268772760275662偏度-0.10048542944058193峰度5.156597958913997 品種jm數(shù)據(jù)長(zhǎng)度997均值-0.00011645794468155402標(biāo)準(zhǔn)差0.01792430947223131方差0.000321280870056321偏度0.0010592028961588294峰度3.743159578760195 品種i9數(shù)據(jù)長(zhǎng)度862均值-0.0007372124442033161標(biāo)準(zhǔn)差0.021187573227350754方差0.0004489132592643504偏度0.00014411506989559858峰度1.585951370650 品種sr數(shù)據(jù)長(zhǎng)度2749均值0.00012213466321006727標(biāo)準(zhǔn)差0.012183745931527473方差0.00014844366492401223偏度-0.038613285961243735峰度2.520231613626 品種cf數(shù)據(jù)長(zhǎng)度3142均值2.2008517526768612e-05標(biāo)準(zhǔn)差0.010657271857464626方差0.00011357744344390753偏度-0.034412876065561426峰度5.6421501855702 品種zc數(shù)據(jù)長(zhǎng)度475均值0.00041282070613302206標(biāo)準(zhǔn)差0.015170141171075784方差0.00023013318315036853偏度-0.1393361750238265峰度1.2533894316392926 品種fg數(shù)據(jù)長(zhǎng)度1068均值-1.57490340832121e-05標(biāo)準(zhǔn)差0.013148411070446203方差0.00017288071367743227偏度0.008980132282547534峰度1.9028507879273144 品種ta數(shù)據(jù)長(zhǎng)度2518均值-0.00023122774877981512標(biāo)準(zhǔn)差0.013637519813532077方差0.00018598194666447998偏度-0.9126347458178135峰度10.954670464918 品種ma數(shù)據(jù)長(zhǎng)度700均值-0.00024988691257348835標(biāo)準(zhǔn)差0.015328611435734359方差0.00023496632854772616偏度0.0164362832185746峰度1.1736088397060 品種oi數(shù)據(jù)長(zhǎng)度1098均值-0.0004539513793265549標(biāo)準(zhǔn)差0.009589990427720812方差9.196791640377678e-05偏度-0.28987574371279706峰度3.871322266527967 品種rm數(shù)據(jù)長(zhǎng)度1049均值1.458523923966432e-05標(biāo)準(zhǔn)差0.013432556545527753方差0.00018043357534880047偏度-0.053300026893851014峰度1.3938292783638 品種sm數(shù)據(jù)長(zhǎng)度548均值-3.179600698107184e-05標(biāo)準(zhǔn)差0.020018458278106444方差0.00040073867183228846偏度-2.6734390275887647峰度31.533801188366837 #正態(tài)分布的偏度應(yīng)該是0,峰度是3,所以,不滿者這些的都是非標(biāo)準(zhǔn)正態(tài)分布
以上這篇python 實(shí)現(xiàn)檢驗(yàn)33品種數(shù)據(jù)是否是正態(tài)分布就是小編分享給大家的全部?jī)?nèi)容了,希望能給大家一個(gè)參考,也希望大家多多支持腳本之家。
相關(guān)文章
Python實(shí)現(xiàn)將橫表和縱表任意轉(zhuǎn)換的兩種方法
在日常做數(shù)據(jù)分析,接收到最多的表格是縱表,每個(gè)字段變量都有很長(zhǎng)數(shù)據(jù)的長(zhǎng)表,我們稱之為縱向數(shù)據(jù),但是,有時(shí)候,我們也會(huì)遇到橫表,對(duì)于橫向數(shù)據(jù),我們會(huì)數(shù)據(jù)轉(zhuǎn)化,將其轉(zhuǎn)化為縱向數(shù)據(jù),感興趣的同學(xué)跟著小編一起來(lái)學(xué)習(xí)吧2023-12-12
tensorflow官方github預(yù)訓(xùn)練模型下載方式
這篇文章主要介紹了tensorflow官方github預(yù)訓(xùn)練模型下載方式,具有很好的參考價(jià)值,希望對(duì)大家有所幫助,如有錯(cuò)誤或未考慮完全的地方,望不吝賜教2024-02-02
利用python對(duì)excel中一列的時(shí)間數(shù)據(jù)更改格式操作
這篇文章主要介紹了利用python對(duì)excel中一列的時(shí)間數(shù)據(jù)更改格式操作,具有很好的參考價(jià)值,希望對(duì)大家有所幫助。一起跟隨小編過(guò)來(lái)看看吧2020-07-07
基于python連接oracle導(dǎo)并出數(shù)據(jù)文件
這篇文章主要介紹了基于python連接oracle導(dǎo)并出數(shù)據(jù)文件,文中通過(guò)示例代碼介紹的非常詳細(xì),對(duì)大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價(jià)值,需要的朋友可以參考下2020-04-04
Pytorch實(shí)現(xiàn)張量的創(chuàng)建與使用方法
本文主要介紹了Pytorch實(shí)現(xiàn)張量創(chuàng)建使用,文中通過(guò)示例代碼介紹的非常詳細(xì),對(duì)大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價(jià)值,需要的朋友們下面隨著小編來(lái)一起學(xué)習(xí)學(xué)習(xí)吧2021-08-08
Django 全局的static和templates的使用詳解
這篇文章主要介紹了Django 全局的static和templates的使用詳解,文中通過(guò)示例代碼介紹的非常詳細(xì),對(duì)大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價(jià)值,需要的朋友可以參考下2019-07-07
Pytorch框架實(shí)現(xiàn)mnist手寫(xiě)庫(kù)識(shí)別(與tensorflow對(duì)比)
這篇文章主要介紹了Pytorch框架實(shí)現(xiàn)mnist手寫(xiě)庫(kù)識(shí)別(與tensorflow對(duì)比),文中通過(guò)示例代碼介紹的非常詳細(xì),對(duì)大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價(jià)值,需要的朋友們下面隨著小編來(lái)一起學(xué)習(xí)學(xué)習(xí)吧2020-07-07

