關于PyTorch源碼解讀之torchvision.models
PyTorch框架中有一個非常重要且好用的包:torchvision,該包主要由3個子包組成,分別是:torchvision.datasets、torchvision.models、torchvision.transforms。
這3個子包的具體介紹可以參考官網(wǎng):
http://pytorch.org/docs/master/torchvision/index.html。
具體代碼可以參考github:
https://github.com/pytorch/vision/tree/master/torchvision。
這篇博客介紹torchvision.models。torchvision.models這個包中包含alexnet、densenet、inception、resnet、squeezenet、vgg等常用的網(wǎng)絡結構,并且提供了預訓練模型,可以通過簡單調用來讀取網(wǎng)絡結構和預訓練模型。
使用例子:
import torchvision model = torchvision.models.resnet50(pretrained=True)
這樣就導入了resnet50的預訓練模型了。如果只需要網(wǎng)絡結構,不需要用預訓練模型的參數(shù)來初始化,那么就是:
model = torchvision.models.resnet50(pretrained=False)
如果要導入densenet模型也是同樣的道理,比如導入densenet169,且不需要是預訓練的模型:
model = torchvision.models.densenet169(pretrained=False)
由于pretrained參數(shù)默認是False,所以等價于:
model = torchvision.models.densenet169()
不過為了代碼清晰,最好還是加上參數(shù)賦值。
接下來以導入resnet50為例介紹具體導入模型時候的源碼。運行model = torchvision.models.resnet50(pretrained=True)的時候,是通過models包下的resnet.py腳本進行的,源碼如下:
首先是導入必要的庫,其中model_zoo是和導入預訓練模型相關的包,另外all變量定義了可以從外部import的函數(shù)名或類名。這也是前面為什么可以用torchvision.models.resnet50()來調用的原因。model_urls這個字典是預訓練模型的下載地址。
import torch.nn as nn
import math
import torch.utils.model_zoo as model_zoo
__all__ = ['ResNet', 'resnet18', 'resnet34', 'resnet50', 'resnet101',
'resnet152']
model_urls = {
'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth',
'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth',
'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth',
'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth',
'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth',
}
接下來就是resnet50這個函數(shù)了,參數(shù)pretrained默認是False。首先model = ResNet(Bottleneck, [3, 4, 6, 3], **kwargs)是構建網(wǎng)絡結構,Bottleneck是另外一個構建bottleneck的類,在ResNet網(wǎng)絡結構的構建中有很多重復的子結構,這些子結構就是通過Bottleneck類來構建的,后面會介紹。然后如果參數(shù)pretrained是True,那么就會通過model_zoo.py中的load_url函數(shù)根據(jù)model_urls字典下載或導入相應的預訓練模型。最后通過調用model的load_state_dict方法用預訓練的模型參數(shù)來初始化你構建的網(wǎng)絡結構,這個方法就是PyTorch中通用的用一個模型的參數(shù)初始化另一個模型的層的操作。load_state_dict方法還有一個重要的參數(shù)是strict,該參數(shù)默認是True,表示預訓練模型的層和你的網(wǎng)絡結構層嚴格對應相等(比如層名和維度)。
def resnet50(pretrained=False, **kwargs): """Constructs a ResNet-50 model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet """ model = ResNet(Bottleneck, [3, 4, 6, 3], **kwargs) if pretrained: model.load_state_dict(model_zoo.load_url(model_urls['resnet50'])) return model
其他resnet18、resnet101等函數(shù)和resnet50基本類似,差別主要是在:
1、構建網(wǎng)絡結構的時候block的參數(shù)不一樣,比如resnet18中是[2, 2, 2, 2],resnet101中是[3, 4, 23, 3]。
2、調用的block類不一樣,比如在resnet50、resnet101、resnet152中調用的是Bottleneck類,而在resnet18和resnet34中調用的是BasicBlock類,這兩個類的區(qū)別主要是在residual結果中卷積層的數(shù)量不同,這個是和網(wǎng)絡結構相關的,后面會詳細介紹。
3、如果下載預訓練模型的話,model_urls字典的鍵不一樣,對應不同的預訓練模型。因此接下來分別看看如何構建網(wǎng)絡結構和如何導入預訓練模型。
def resnet18(pretrained=False, **kwargs): """Constructs a ResNet-18 model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet """ model = ResNet(BasicBlock, [2, 2, 2, 2], **kwargs) if pretrained: model.load_state_dict(model_zoo.load_url(model_urls['resnet18'])) return model def resnet101(pretrained=False, **kwargs): """Constructs a ResNet-101 model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet """ model = ResNet(Bottleneck, [3, 4, 23, 3], **kwargs) if pretrained: model.load_state_dict(model_zoo.load_url(model_urls['resnet101'])) return model
構建ResNet網(wǎng)絡是通過ResNet這個類進行的。首先還是繼承PyTorch中網(wǎng)絡的基類:torch.nn.Module,其次主要的是重寫初始化__init__和forward方法。在初始化__init__中主要是定義一些層的參數(shù)。forward方法中主要是定義數(shù)據(jù)在層之間的流動順序,也就是層的連接順序。另外還可以在類中定義其他私有方法用來模塊化一些操作,比如這里的_make_layer方法是用來構建ResNet網(wǎng)絡中的4個blocks。_make_layer方法的第一個輸入block是Bottleneck或BasicBlock類,第二個輸入是該blocks的輸出channel,第三個輸入是每個blocks中包含多少個residual子結構,因此layers這個列表就是前面resnet50的[3, 4, 6, 3]。
_make_layer方法中比較重要的兩行代碼是:1、layers.append(block(self.inplanes, planes, stride, downsample)),該部分是將每個blocks的第一個residual結構保存在layers列表中。2、 for i in range(1, blocks): layers.append(block(self.inplanes, planes)),該部分是將每個blocks的剩下residual 結構保存在layers列表中,這樣就完成了一個blocks的構造。這兩行代碼中都是通過Bottleneck這個類來完成每個residual的構建,接下來介紹Bottleneck類。
class ResNet(nn.Module):
def __init__(self, block, layers, num_classes=1000):
self.inplanes = 64
super(ResNet, self).__init__()
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3,
bias=False)
self.bn1 = nn.BatchNorm2d(64)
self.relu = nn.ReLU(inplace=True)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.layer1 = self._make_layer(block, 64, layers[0])
self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
self.avgpool = nn.AvgPool2d(7, stride=1)
self.fc = nn.Linear(512 * block.expansion, num_classes)
for m in self.modules():
if isinstance(m, nn.Conv2d):
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
m.weight.data.normal_(0, math.sqrt(2. / n))
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()
def _make_layer(self, block, planes, blocks, stride=1):
downsample = None
if stride != 1 or self.inplanes != planes * block.expansion:
downsample = nn.Sequential(
nn.Conv2d(self.inplanes, planes * block.expansion,
kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(planes * block.expansion),
)
layers = []
layers.append(block(self.inplanes, planes, stride, downsample))
self.inplanes = planes * block.expansion
for i in range(1, blocks):
layers.append(block(self.inplanes, planes))
return nn.Sequential(*layers)
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.avgpool(x)
x = x.view(x.size(0), -1)
x = self.fc(x)
return x
從前面的ResNet類可以看出,在構造ResNet網(wǎng)絡的時候,最重要的是Bottleneck這個類,因為ResNet是由residual結構組成的,而Bottleneck類就是完成residual結構的構建。同樣Bottlenect還是繼承了torch.nn.Module類,且重寫了__init__和forward方法。從forward方法可以看出,bottleneck就是我們熟悉的3個主要的卷積層、BN層和激活層,最后的out += residual就是element-wise add的操作。
class Bottleneck(nn.Module):
expansion = 4
def __init__(self, inplanes, planes, stride=1, downsample=None):
super(Bottleneck, self).__init__()
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
self.bn1 = nn.BatchNorm2d(planes)
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride,
padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(planes)
self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False)
self.bn3 = nn.BatchNorm2d(planes * 4)
self.relu = nn.ReLU(inplace=True)
self.downsample = downsample
self.stride = stride
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)
out = self.conv3(out)
out = self.bn3(out)
if self.downsample is not None:
residual = self.downsample(x)
out += residual
out = self.relu(out)
return out
BasicBlock類和Bottleneck類類似,前者主要是用來構建ResNet18和ResNet34網(wǎng)絡,因為這兩個網(wǎng)絡的residual結構只包含兩個卷積層,沒有Bottleneck類中的bottleneck概念。因此在該類中,第一個卷積層采用的是kernel_size=3的卷積,如conv3x3函數(shù)所示。
def conv3x3(in_planes, out_planes, stride=1): """3x3 convolution with padding""" return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False) class BasicBlock(nn.Module): expansion = 1 def __init__(self, inplanes, planes, stride=1, downsample=None): super(BasicBlock, self).__init__() self.conv1 = conv3x3(inplanes, planes, stride) self.bn1 = nn.BatchNorm2d(planes) self.relu = nn.ReLU(inplace=True) self.conv2 = conv3x3(planes, planes) self.bn2 = nn.BatchNorm2d(planes) self.downsample = downsample self.stride = stride def forward(self, x): residual = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) if self.downsample is not None: residual = self.downsample(x) out += residual out = self.relu(out) return out
介紹完如何構建網(wǎng)絡,接下來就是如何獲取預訓練模型。前面提到這一行代碼:if pretrained: model.load_state_dict(model_zoo.load_url(model_urls['resnet50'])),主要就是通過model_zoo.py中的load_url函數(shù)根據(jù)model_urls字典導入相應的預訓練模型,models_zoo.py腳本的github地址:
https://github.com/pytorch/pytorch/blob/master/torch/utils/model_zoo.py。
load_url函數(shù)源碼如下。
首先model_dir是下載下來的模型的保存地址,如果沒有指定的話就會保存在項目的.torch目錄下,最好指定。cached_file是保存模型的路徑加上模型名稱。接下來的 if not os.path.exists(cached_file)語句用來判斷是否指定目錄下已經(jīng)存在要下載模型,如果已經(jīng)存在,就直接調用torch.load接口導入模型,如果不存在,則從網(wǎng)上下載,下載是通過_download_url_to_file(url, cached_file, hash_prefix, progress=progress)進行的,不再細講。重點在于模型導入是通過torch.load()接口來進行的,不管你的模型是從網(wǎng)上下載的還是本地已有的。
def load_url(url, model_dir=None, map_location=None, progress=True):
r"""Loads the Torch serialized object at the given URL.
If the object is already present in `model_dir`, it's deserialized and
returned. The filename part of the URL should follow the naming convention
``filename-<sha256>.ext`` where ``<sha256>`` is the first eight or more
digits of the SHA256 hash of the contents of the file. The hash is used to
ensure unique names and to verify the contents of the file.
The default value of `model_dir` is ``$TORCH_HOME/models`` where
``$TORCH_HOME`` defaults to ``~/.torch``. The default directory can be
overriden with the ``$TORCH_MODEL_ZOO`` environment variable.
Args:
url (string): URL of the object to download
model_dir (string, optional): directory in which to save the object
map_location (optional): a function or a dict specifying how to remap storage locations (see torch.load)
progress (bool, optional): whether or not to display a progress bar to stderr
Example:
>>> state_dict = torch.utils.model_zoo.load_url('https://s3.amazonaws.com/pytorch/models/resnet18-5c106cde.pth')
"""
if model_dir is None:
torch_home = os.path.expanduser(os.getenv('TORCH_HOME', '~/.torch'))
model_dir = os.getenv('TORCH_MODEL_ZOO', os.path.join(torch_home, 'models'))
if not os.path.exists(model_dir):
os.makedirs(model_dir)
parts = urlparse(url)
filename = os.path.basename(parts.path)
cached_file = os.path.join(model_dir, filename)
if not os.path.exists(cached_file):
sys.stderr.write('Downloading: "{}" to {}\n'.format(url, cached_file))
hash_prefix = HASH_REGEX.search(filename).group(1)
_download_url_to_file(url, cached_file, hash_prefix, progress=progress)
return torch.load(cached_file, map_location=map_location)
以上這篇關于PyTorch源碼解讀之torchvision.models就是小編分享給大家的全部內容了,希望能給大家一個參考,也希望大家多多支持腳本之家。
相關文章
我在七夕佳節(jié)用Python制作的表白神器,程序員也應該擁有愛情!建議收藏
這篇文章主要介紹了我在七夕佳節(jié)用Python制作的表白神器,建議收藏,程序員也該擁有愛情,感興趣的小伙伴快來看看吧2021-08-08
python 限制函數(shù)執(zhí)行時間,自己實現(xiàn)timeout的實例
今天小編就為大家分享一篇python 限制函數(shù)執(zhí)行時間,自己實現(xiàn)timeout的實例,具有很好的參考價值,希望對大家有所幫助。一起跟隨小編過來看看吧2019-01-01
Python?isdigit()函數(shù)判斷字符串是否全都是數(shù)字字符示例
這篇文章主要為大家介紹了Python判斷字符串是否全都是數(shù)字字符示例,有需要的朋友可以借鑒參考下,希望能夠有所幫助,祝大家多多進步,早日升職加薪2024-01-01
Python3中在Anaconda環(huán)境下安裝basemap包
今天小編就為大家分享一篇關于Python3中在Anaconda環(huán)境下安裝basemap包的文章,小編覺得內容挺不錯的,現(xiàn)在分享給大家,具有很好的參考價值,需要的朋友一起跟隨小編來看看吧2018-10-10
Python3.10.4激活venv環(huán)境失敗解決方法
這篇文章主要介紹了Python3.10.4激活venv環(huán)境失敗解決方法的相關資料,需要的朋友可以參考下2023-01-01
使用Python FastAPI構建Web服務的實現(xiàn)
這篇文章主要介紹了使用Python FastAPI構建Web服務的實現(xiàn),文中通過示例代碼介紹的非常詳細,對大家的學習或者工作具有一定的參考學習價值,需要的朋友們下面隨著小編來一起學習學習吧2020-06-06

