TensorFlow車(chē)牌識(shí)別完整版代碼(含車(chē)牌數(shù)據(jù)集)
在之前發(fā)布的一篇博文《MNIST數(shù)據(jù)集實(shí)現(xiàn)車(chē)牌識(shí)別--初步演示版》中,我們演示了如何使用TensorFlow進(jìn)行車(chē)牌識(shí)別,但是,當(dāng)時(shí)采用的數(shù)據(jù)集是MNIST數(shù)字手寫(xiě)體,只能分類(lèi)0-9共10個(gè)數(shù)字,無(wú)法分類(lèi)省份簡(jiǎn)稱(chēng)和字母,局限性較大,無(wú)實(shí)際意義。
經(jīng)過(guò)圖像定位分割處理,博主收集了相關(guān)省份簡(jiǎn)稱(chēng)和26個(gè)字母的圖片數(shù)據(jù)集,結(jié)合前述博文中貼出的python+TensorFlow代碼,實(shí)現(xiàn)了完整的車(chē)牌識(shí)別功能。本著分享精神,在此送上全部代碼和車(chē)牌數(shù)據(jù)集。
車(chē)牌數(shù)據(jù)集下載地址(約4000張圖片):tf_car_license_dataset_jb51.rar
省份簡(jiǎn)稱(chēng)訓(xùn)練+識(shí)別代碼(保存文件名為train-license-province.py)(拷貝代碼請(qǐng)務(wù)必注意python文本縮進(jìn),只要有一處縮進(jìn)錯(cuò)誤,就無(wú)法得到正確結(jié)果,或者出現(xiàn)異常):
#!/usr/bin/python3.5
# -*- coding: utf-8 -*-
import sys
import os
import time
import random
import numpy as np
import tensorflow as tf
from PIL import Image
SIZE = 1280
WIDTH = 32
HEIGHT = 40
NUM_CLASSES = 6
iterations = 300
SAVER_DIR = "train-saver/province/"
PROVINCES = ("京","閩","粵","蘇","滬","浙")
nProvinceIndex = 0
time_begin = time.time()
# 定義輸入節(jié)點(diǎn),對(duì)應(yīng)于圖片像素值矩陣集合和圖片標(biāo)簽(即所代表的數(shù)字)
x = tf.placeholder(tf.float32, shape=[None, SIZE])
y_ = tf.placeholder(tf.float32, shape=[None, NUM_CLASSES])
x_image = tf.reshape(x, [-1, WIDTH, HEIGHT, 1])
# 定義卷積函數(shù)
def conv_layer(inputs, W, b, conv_strides, kernel_size, pool_strides, padding):
L1_conv = tf.nn.conv2d(inputs, W, strides=conv_strides, padding=padding)
L1_relu = tf.nn.relu(L1_conv + b)
return tf.nn.max_pool(L1_relu, ksize=kernel_size, strides=pool_strides, padding='SAME')
# 定義全連接層函數(shù)
def full_connect(inputs, W, b):
return tf.nn.relu(tf.matmul(inputs, W) + b)
if __name__ =='__main__' and sys.argv[1]=='train':
# 第一次遍歷圖片目錄是為了獲取圖片總數(shù)
input_count = 0
for i in range(0,NUM_CLASSES):
dir = './train_images/training-set/chinese-characters/%s/' % i # 這里可以改成你自己的圖片目錄,i為分類(lèi)標(biāo)簽
for rt, dirs, files in os.walk(dir):
for filename in files:
input_count += 1
# 定義對(duì)應(yīng)維數(shù)和各維長(zhǎng)度的數(shù)組
input_images = np.array([[0]*SIZE for i in range(input_count)])
input_labels = np.array([[0]*NUM_CLASSES for i in range(input_count)])
# 第二次遍歷圖片目錄是為了生成圖片數(shù)據(jù)和標(biāo)簽
index = 0
for i in range(0,NUM_CLASSES):
dir = './train_images/training-set/chinese-characters/%s/' % i # 這里可以改成你自己的圖片目錄,i為分類(lèi)標(biāo)簽
for rt, dirs, files in os.walk(dir):
for filename in files:
filename = dir + filename
img = Image.open(filename)
width = img.size[0]
height = img.size[1]
for h in range(0, height):
for w in range(0, width):
# 通過(guò)這樣的處理,使數(shù)字的線條變細(xì),有利于提高識(shí)別準(zhǔn)確率
if img.getpixel((w, h)) > 230:
input_images[index][w+h*width] = 0
else:
input_images[index][w+h*width] = 1
input_labels[index][i] = 1
index += 1
# 第一次遍歷圖片目錄是為了獲取圖片總數(shù)
val_count = 0
for i in range(0,NUM_CLASSES):
dir = './train_images/validation-set/chinese-characters/%s/' % i # 這里可以改成你自己的圖片目錄,i為分類(lèi)標(biāo)簽
for rt, dirs, files in os.walk(dir):
for filename in files:
val_count += 1
# 定義對(duì)應(yīng)維數(shù)和各維長(zhǎng)度的數(shù)組
val_images = np.array([[0]*SIZE for i in range(val_count)])
val_labels = np.array([[0]*NUM_CLASSES for i in range(val_count)])
# 第二次遍歷圖片目錄是為了生成圖片數(shù)據(jù)和標(biāo)簽
index = 0
for i in range(0,NUM_CLASSES):
dir = './train_images/validation-set/chinese-characters/%s/' % i # 這里可以改成你自己的圖片目錄,i為分類(lèi)標(biāo)簽
for rt, dirs, files in os.walk(dir):
for filename in files:
filename = dir + filename
img = Image.open(filename)
width = img.size[0]
height = img.size[1]
for h in range(0, height):
for w in range(0, width):
# 通過(guò)這樣的處理,使數(shù)字的線條變細(xì),有利于提高識(shí)別準(zhǔn)確率
if img.getpixel((w, h)) > 230:
val_images[index][w+h*width] = 0
else:
val_images[index][w+h*width] = 1
val_labels[index][i] = 1
index += 1
with tf.Session() as sess:
# 第一個(gè)卷積層
W_conv1 = tf.Variable(tf.truncated_normal([8, 8, 1, 16], stddev=0.1), name="W_conv1")
b_conv1 = tf.Variable(tf.constant(0.1, shape=[16]), name="b_conv1")
conv_strides = [1, 1, 1, 1]
kernel_size = [1, 2, 2, 1]
pool_strides = [1, 2, 2, 1]
L1_pool = conv_layer(x_image, W_conv1, b_conv1, conv_strides, kernel_size, pool_strides, padding='SAME')
# 第二個(gè)卷積層
W_conv2 = tf.Variable(tf.truncated_normal([5, 5, 16, 32], stddev=0.1), name="W_conv2")
b_conv2 = tf.Variable(tf.constant(0.1, shape=[32]), name="b_conv2")
conv_strides = [1, 1, 1, 1]
kernel_size = [1, 1, 1, 1]
pool_strides = [1, 1, 1, 1]
L2_pool = conv_layer(L1_pool, W_conv2, b_conv2, conv_strides, kernel_size, pool_strides, padding='SAME')
# 全連接層
W_fc1 = tf.Variable(tf.truncated_normal([16 * 20 * 32, 512], stddev=0.1), name="W_fc1")
b_fc1 = tf.Variable(tf.constant(0.1, shape=[512]), name="b_fc1")
h_pool2_flat = tf.reshape(L2_pool, [-1, 16 * 20*32])
h_fc1 = full_connect(h_pool2_flat, W_fc1, b_fc1)
# dropout
keep_prob = tf.placeholder(tf.float32)
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
# readout層
W_fc2 = tf.Variable(tf.truncated_normal([512, NUM_CLASSES], stddev=0.1), name="W_fc2")
b_fc2 = tf.Variable(tf.constant(0.1, shape=[NUM_CLASSES]), name="b_fc2")
# 定義優(yōu)化器和訓(xùn)練op
y_conv = tf.matmul(h_fc1_drop, W_fc2) + b_fc2
cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=y_conv))
train_step = tf.train.AdamOptimizer((1e-4)).minimize(cross_entropy)
correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.argmax(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
# 初始化saver
saver = tf.train.Saver()
sess.run(tf.global_variables_initializer())
time_elapsed = time.time() - time_begin
print("讀取圖片文件耗費(fèi)時(shí)間:%d秒" % time_elapsed)
time_begin = time.time()
print ("一共讀取了 %s 個(gè)訓(xùn)練圖像, %s 個(gè)標(biāo)簽" % (input_count, input_count))
# 設(shè)置每次訓(xùn)練op的輸入個(gè)數(shù)和迭代次數(shù),這里為了支持任意圖片總數(shù),定義了一個(gè)余數(shù)remainder,譬如,如果每次訓(xùn)練op的輸入個(gè)數(shù)為60,圖片總數(shù)為150張,則前面兩次各輸入60張,最后一次輸入30張(余數(shù)30)
batch_size = 60
iterations = iterations
batches_count = int(input_count / batch_size)
remainder = input_count % batch_size
print ("訓(xùn)練數(shù)據(jù)集分成 %s 批, 前面每批 %s 個(gè)數(shù)據(jù),最后一批 %s 個(gè)數(shù)據(jù)" % (batches_count+1, batch_size, remainder))
# 執(zhí)行訓(xùn)練迭代
for it in range(iterations):
# 這里的關(guān)鍵是要把輸入數(shù)組轉(zhuǎn)為np.array
for n in range(batches_count):
train_step.run(feed_dict={x: input_images[n*batch_size:(n+1)*batch_size], y_: input_labels[n*batch_size:(n+1)*batch_size], keep_prob: 0.5})
if remainder > 0:
start_index = batches_count * batch_size;
train_step.run(feed_dict={x: input_images[start_index:input_count-1], y_: input_labels[start_index:input_count-1], keep_prob: 0.5})
# 每完成五次迭代,判斷準(zhǔn)確度是否已達(dá)到100%,達(dá)到則退出迭代循環(huán)
iterate_accuracy = 0
if it%5 == 0:
iterate_accuracy = accuracy.eval(feed_dict={x: val_images, y_: val_labels, keep_prob: 1.0})
print ('第 %d 次訓(xùn)練迭代: 準(zhǔn)確率 %0.5f%%' % (it, iterate_accuracy*100))
if iterate_accuracy >= 0.9999 and it >= 150:
break;
print ('完成訓(xùn)練!')
time_elapsed = time.time() - time_begin
print ("訓(xùn)練耗費(fèi)時(shí)間:%d秒" % time_elapsed)
time_begin = time.time()
# 保存訓(xùn)練結(jié)果
if not os.path.exists(SAVER_DIR):
print ('不存在訓(xùn)練數(shù)據(jù)保存目錄,現(xiàn)在創(chuàng)建保存目錄')
os.makedirs(SAVER_DIR)
saver_path = saver.save(sess, "%smodel.ckpt"%(SAVER_DIR))
if __name__ =='__main__' and sys.argv[1]=='predict':
saver = tf.train.import_meta_graph("%smodel.ckpt.meta"%(SAVER_DIR))
with tf.Session() as sess:
model_file=tf.train.latest_checkpoint(SAVER_DIR)
saver.restore(sess, model_file)
# 第一個(gè)卷積層
W_conv1 = sess.graph.get_tensor_by_name("W_conv1:0")
b_conv1 = sess.graph.get_tensor_by_name("b_conv1:0")
conv_strides = [1, 1, 1, 1]
kernel_size = [1, 2, 2, 1]
pool_strides = [1, 2, 2, 1]
L1_pool = conv_layer(x_image, W_conv1, b_conv1, conv_strides, kernel_size, pool_strides, padding='SAME')
# 第二個(gè)卷積層
W_conv2 = sess.graph.get_tensor_by_name("W_conv2:0")
b_conv2 = sess.graph.get_tensor_by_name("b_conv2:0")
conv_strides = [1, 1, 1, 1]
kernel_size = [1, 1, 1, 1]
pool_strides = [1, 1, 1, 1]
L2_pool = conv_layer(L1_pool, W_conv2, b_conv2, conv_strides, kernel_size, pool_strides, padding='SAME')
# 全連接層
W_fc1 = sess.graph.get_tensor_by_name("W_fc1:0")
b_fc1 = sess.graph.get_tensor_by_name("b_fc1:0")
h_pool2_flat = tf.reshape(L2_pool, [-1, 16 * 20*32])
h_fc1 = full_connect(h_pool2_flat, W_fc1, b_fc1)
# dropout
keep_prob = tf.placeholder(tf.float32)
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
# readout層
W_fc2 = sess.graph.get_tensor_by_name("W_fc2:0")
b_fc2 = sess.graph.get_tensor_by_name("b_fc2:0")
# 定義優(yōu)化器和訓(xùn)練op
conv = tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)
for n in range(1,2):
path = "test_images/%s.bmp" % (n)
img = Image.open(path)
width = img.size[0]
height = img.size[1]
img_data = [[0]*SIZE for i in range(1)]
for h in range(0, height):
for w in range(0, width):
if img.getpixel((w, h)) < 190:
img_data[0][w+h*width] = 1
else:
img_data[0][w+h*width] = 0
result = sess.run(conv, feed_dict = {x: np.array(img_data), keep_prob: 1.0})
max1 = 0
max2 = 0
max3 = 0
max1_index = 0
max2_index = 0
max3_index = 0
for j in range(NUM_CLASSES):
if result[0][j] > max1:
max1 = result[0][j]
max1_index = j
continue
if (result[0][j]>max2) and (result[0][j]<=max1):
max2 = result[0][j]
max2_index = j
continue
if (result[0][j]>max3) and (result[0][j]<=max2):
max3 = result[0][j]
max3_index = j
continue
nProvinceIndex = max1_index
print ("概率: [%s %0.2f%%] [%s %0.2f%%] [%s %0.2f%%]" % (PROVINCES[max1_index],max1*100, PROVINCES[max2_index],max2*100, PROVINCES[max3_index],max3*100))
print ("省份簡(jiǎn)稱(chēng)是: %s" % PROVINCES[nProvinceIndex])
城市代號(hào)訓(xùn)練+識(shí)別代碼(保存文件名為train-license-letters.py):
#!/usr/bin/python3.5
# -*- coding: utf-8 -*-
import sys
import os
import time
import random
import numpy as np
import tensorflow as tf
from PIL import Image
SIZE = 1280
WIDTH = 32
HEIGHT = 40
NUM_CLASSES = 26
iterations = 500
SAVER_DIR = "train-saver/letters/"
LETTERS_DIGITS = ("A","B","C","D","E","F","G","H","J","K","L","M","N","P","Q","R","S","T","U","V","W","X","Y","Z","I","O")
license_num = ""
time_begin = time.time()
# 定義輸入節(jié)點(diǎn),對(duì)應(yīng)于圖片像素值矩陣集合和圖片標(biāo)簽(即所代表的數(shù)字)
x = tf.placeholder(tf.float32, shape=[None, SIZE])
y_ = tf.placeholder(tf.float32, shape=[None, NUM_CLASSES])
x_image = tf.reshape(x, [-1, WIDTH, HEIGHT, 1])
# 定義卷積函數(shù)
def conv_layer(inputs, W, b, conv_strides, kernel_size, pool_strides, padding):
L1_conv = tf.nn.conv2d(inputs, W, strides=conv_strides, padding=padding)
L1_relu = tf.nn.relu(L1_conv + b)
return tf.nn.max_pool(L1_relu, ksize=kernel_size, strides=pool_strides, padding='SAME')
# 定義全連接層函數(shù)
def full_connect(inputs, W, b):
return tf.nn.relu(tf.matmul(inputs, W) + b)
if __name__ =='__main__' and sys.argv[1]=='train':
# 第一次遍歷圖片目錄是為了獲取圖片總數(shù)
input_count = 0
for i in range(0+10,NUM_CLASSES+10):
dir = './train_images/training-set/letters/%s/' % i # 這里可以改成你自己的圖片目錄,i為分類(lèi)標(biāo)簽
for rt, dirs, files in os.walk(dir):
for filename in files:
input_count += 1
# 定義對(duì)應(yīng)維數(shù)和各維長(zhǎng)度的數(shù)組
input_images = np.array([[0]*SIZE for i in range(input_count)])
input_labels = np.array([[0]*NUM_CLASSES for i in range(input_count)])
# 第二次遍歷圖片目錄是為了生成圖片數(shù)據(jù)和標(biāo)簽
index = 0
for i in range(0+10,NUM_CLASSES+10):
dir = './train_images/training-set/letters/%s/' % i # 這里可以改成你自己的圖片目錄,i為分類(lèi)標(biāo)簽
for rt, dirs, files in os.walk(dir):
for filename in files:
filename = dir + filename
img = Image.open(filename)
width = img.size[0]
height = img.size[1]
for h in range(0, height):
for w in range(0, width):
# 通過(guò)這樣的處理,使數(shù)字的線條變細(xì),有利于提高識(shí)別準(zhǔn)確率
if img.getpixel((w, h)) > 230:
input_images[index][w+h*width] = 0
else:
input_images[index][w+h*width] = 1
#print ("i=%d, index=%d" % (i, index))
input_labels[index][i-10] = 1
index += 1
# 第一次遍歷圖片目錄是為了獲取圖片總數(shù)
val_count = 0
for i in range(0+10,NUM_CLASSES+10):
dir = './train_images/validation-set/%s/' % i # 這里可以改成你自己的圖片目錄,i為分類(lèi)標(biāo)簽
for rt, dirs, files in os.walk(dir):
for filename in files:
val_count += 1
# 定義對(duì)應(yīng)維數(shù)和各維長(zhǎng)度的數(shù)組
val_images = np.array([[0]*SIZE for i in range(val_count)])
val_labels = np.array([[0]*NUM_CLASSES for i in range(val_count)])
# 第二次遍歷圖片目錄是為了生成圖片數(shù)據(jù)和標(biāo)簽
index = 0
for i in range(0+10,NUM_CLASSES+10):
dir = './train_images/validation-set/%s/' % i # 這里可以改成你自己的圖片目錄,i為分類(lèi)標(biāo)簽
for rt, dirs, files in os.walk(dir):
for filename in files:
filename = dir + filename
img = Image.open(filename)
width = img.size[0]
height = img.size[1]
for h in range(0, height):
for w in range(0, width):
# 通過(guò)這樣的處理,使數(shù)字的線條變細(xì),有利于提高識(shí)別準(zhǔn)確率
if img.getpixel((w, h)) > 230:
val_images[index][w+h*width] = 0
else:
val_images[index][w+h*width] = 1
val_labels[index][i-10] = 1
index += 1
with tf.Session() as sess:
# 第一個(gè)卷積層
W_conv1 = tf.Variable(tf.truncated_normal([8, 8, 1, 16], stddev=0.1), name="W_conv1")
b_conv1 = tf.Variable(tf.constant(0.1, shape=[16]), name="b_conv1")
conv_strides = [1, 1, 1, 1]
kernel_size = [1, 2, 2, 1]
pool_strides = [1, 2, 2, 1]
L1_pool = conv_layer(x_image, W_conv1, b_conv1, conv_strides, kernel_size, pool_strides, padding='SAME')
# 第二個(gè)卷積層
W_conv2 = tf.Variable(tf.truncated_normal([5, 5, 16, 32], stddev=0.1), name="W_conv2")
b_conv2 = tf.Variable(tf.constant(0.1, shape=[32]), name="b_conv2")
conv_strides = [1, 1, 1, 1]
kernel_size = [1, 1, 1, 1]
pool_strides = [1, 1, 1, 1]
L2_pool = conv_layer(L1_pool, W_conv2, b_conv2, conv_strides, kernel_size, pool_strides, padding='SAME')
# 全連接層
W_fc1 = tf.Variable(tf.truncated_normal([16 * 20 * 32, 512], stddev=0.1), name="W_fc1")
b_fc1 = tf.Variable(tf.constant(0.1, shape=[512]), name="b_fc1")
h_pool2_flat = tf.reshape(L2_pool, [-1, 16 * 20*32])
h_fc1 = full_connect(h_pool2_flat, W_fc1, b_fc1)
# dropout
keep_prob = tf.placeholder(tf.float32)
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
# readout層
W_fc2 = tf.Variable(tf.truncated_normal([512, NUM_CLASSES], stddev=0.1), name="W_fc2")
b_fc2 = tf.Variable(tf.constant(0.1, shape=[NUM_CLASSES]), name="b_fc2")
# 定義優(yōu)化器和訓(xùn)練op
y_conv = tf.matmul(h_fc1_drop, W_fc2) + b_fc2
cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=y_conv))
train_step = tf.train.AdamOptimizer((1e-4)).minimize(cross_entropy)
correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.argmax(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
sess.run(tf.global_variables_initializer())
time_elapsed = time.time() - time_begin
print("讀取圖片文件耗費(fèi)時(shí)間:%d秒" % time_elapsed)
time_begin = time.time()
print ("一共讀取了 %s 個(gè)訓(xùn)練圖像, %s 個(gè)標(biāo)簽" % (input_count, input_count))
# 設(shè)置每次訓(xùn)練op的輸入個(gè)數(shù)和迭代次數(shù),這里為了支持任意圖片總數(shù),定義了一個(gè)余數(shù)remainder,譬如,如果每次訓(xùn)練op的輸入個(gè)數(shù)為60,圖片總數(shù)為150張,則前面兩次各輸入60張,最后一次輸入30張(余數(shù)30)
batch_size = 60
iterations = iterations
batches_count = int(input_count / batch_size)
remainder = input_count % batch_size
print ("訓(xùn)練數(shù)據(jù)集分成 %s 批, 前面每批 %s 個(gè)數(shù)據(jù),最后一批 %s 個(gè)數(shù)據(jù)" % (batches_count+1, batch_size, remainder))
# 執(zhí)行訓(xùn)練迭代
for it in range(iterations):
# 這里的關(guān)鍵是要把輸入數(shù)組轉(zhuǎn)為np.array
for n in range(batches_count):
train_step.run(feed_dict={x: input_images[n*batch_size:(n+1)*batch_size], y_: input_labels[n*batch_size:(n+1)*batch_size], keep_prob: 0.5})
if remainder > 0:
start_index = batches_count * batch_size;
train_step.run(feed_dict={x: input_images[start_index:input_count-1], y_: input_labels[start_index:input_count-1], keep_prob: 0.5})
# 每完成五次迭代,判斷準(zhǔn)確度是否已達(dá)到100%,達(dá)到則退出迭代循環(huán)
iterate_accuracy = 0
if it%5 == 0:
iterate_accuracy = accuracy.eval(feed_dict={x: val_images, y_: val_labels, keep_prob: 1.0})
print ('第 %d 次訓(xùn)練迭代: 準(zhǔn)確率 %0.5f%%' % (it, iterate_accuracy*100))
if iterate_accuracy >= 0.9999 and it >= iterations:
break;
print ('完成訓(xùn)練!')
time_elapsed = time.time() - time_begin
print ("訓(xùn)練耗費(fèi)時(shí)間:%d秒" % time_elapsed)
time_begin = time.time()
# 保存訓(xùn)練結(jié)果
if not os.path.exists(SAVER_DIR):
print ('不存在訓(xùn)練數(shù)據(jù)保存目錄,現(xiàn)在創(chuàng)建保存目錄')
os.makedirs(SAVER_DIR)
# 初始化saver
saver = tf.train.Saver()
saver_path = saver.save(sess, "%smodel.ckpt"%(SAVER_DIR))
if __name__ =='__main__' and sys.argv[1]=='predict':
saver = tf.train.import_meta_graph("%smodel.ckpt.meta"%(SAVER_DIR))
with tf.Session() as sess:
model_file=tf.train.latest_checkpoint(SAVER_DIR)
saver.restore(sess, model_file)
# 第一個(gè)卷積層
W_conv1 = sess.graph.get_tensor_by_name("W_conv1:0")
b_conv1 = sess.graph.get_tensor_by_name("b_conv1:0")
conv_strides = [1, 1, 1, 1]
kernel_size = [1, 2, 2, 1]
pool_strides = [1, 2, 2, 1]
L1_pool = conv_layer(x_image, W_conv1, b_conv1, conv_strides, kernel_size, pool_strides, padding='SAME')
# 第二個(gè)卷積層
W_conv2 = sess.graph.get_tensor_by_name("W_conv2:0")
b_conv2 = sess.graph.get_tensor_by_name("b_conv2:0")
conv_strides = [1, 1, 1, 1]
kernel_size = [1, 1, 1, 1]
pool_strides = [1, 1, 1, 1]
L2_pool = conv_layer(L1_pool, W_conv2, b_conv2, conv_strides, kernel_size, pool_strides, padding='SAME')
# 全連接層
W_fc1 = sess.graph.get_tensor_by_name("W_fc1:0")
b_fc1 = sess.graph.get_tensor_by_name("b_fc1:0")
h_pool2_flat = tf.reshape(L2_pool, [-1, 16 * 20*32])
h_fc1 = full_connect(h_pool2_flat, W_fc1, b_fc1)
# dropout
keep_prob = tf.placeholder(tf.float32)
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
# readout層
W_fc2 = sess.graph.get_tensor_by_name("W_fc2:0")
b_fc2 = sess.graph.get_tensor_by_name("b_fc2:0")
# 定義優(yōu)化器和訓(xùn)練op
conv = tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)
for n in range(2,3):
path = "test_images/%s.bmp" % (n)
img = Image.open(path)
width = img.size[0]
height = img.size[1]
img_data = [[0]*SIZE for i in range(1)]
for h in range(0, height):
for w in range(0, width):
if img.getpixel((w, h)) < 190:
img_data[0][w+h*width] = 1
else:
img_data[0][w+h*width] = 0
result = sess.run(conv, feed_dict = {x: np.array(img_data), keep_prob: 1.0})
max1 = 0
max2 = 0
max3 = 0
max1_index = 0
max2_index = 0
max3_index = 0
for j in range(NUM_CLASSES):
if result[0][j] > max1:
max1 = result[0][j]
max1_index = j
continue
if (result[0][j]>max2) and (result[0][j]<=max1):
max2 = result[0][j]
max2_index = j
continue
if (result[0][j]>max3) and (result[0][j]<=max2):
max3 = result[0][j]
max3_index = j
continue
if n == 3:
license_num += "-"
license_num = license_num + LETTERS_DIGITS[max1_index]
print ("概率: [%s %0.2f%%] [%s %0.2f%%] [%s %0.2f%%]" % (LETTERS_DIGITS[max1_index],max1*100, LETTERS_DIGITS[max2_index],max2*100, LETTERS_DIGITS[max3_index],max3*100))
print ("城市代號(hào)是: 【%s】" % license_num)
車(chē)牌編號(hào)訓(xùn)練+識(shí)別代碼(保存文件名為train-license-digits.py):
#!/usr/bin/python3.5
# -*- coding: utf-8 -*-
import sys
import os
import time
import random
import numpy as np
import tensorflow as tf
from PIL import Image
SIZE = 1280
WIDTH = 32
HEIGHT = 40
NUM_CLASSES = 34
iterations = 1000
SAVER_DIR = "train-saver/digits/"
LETTERS_DIGITS = ("0","1","2","3","4","5","6","7","8","9","A","B","C","D","E","F","G","H","J","K","L","M","N","P","Q","R","S","T","U","V","W","X","Y","Z")
license_num = ""
time_begin = time.time()
# 定義輸入節(jié)點(diǎn),對(duì)應(yīng)于圖片像素值矩陣集合和圖片標(biāo)簽(即所代表的數(shù)字)
x = tf.placeholder(tf.float32, shape=[None, SIZE])
y_ = tf.placeholder(tf.float32, shape=[None, NUM_CLASSES])
x_image = tf.reshape(x, [-1, WIDTH, HEIGHT, 1])
# 定義卷積函數(shù)
def conv_layer(inputs, W, b, conv_strides, kernel_size, pool_strides, padding):
L1_conv = tf.nn.conv2d(inputs, W, strides=conv_strides, padding=padding)
L1_relu = tf.nn.relu(L1_conv + b)
return tf.nn.max_pool(L1_relu, ksize=kernel_size, strides=pool_strides, padding='SAME')
# 定義全連接層函數(shù)
def full_connect(inputs, W, b):
return tf.nn.relu(tf.matmul(inputs, W) + b)
if __name__ =='__main__' and sys.argv[1]=='train':
# 第一次遍歷圖片目錄是為了獲取圖片總數(shù)
input_count = 0
for i in range(0,NUM_CLASSES):
dir = './train_images/training-set/%s/' % i # 這里可以改成你自己的圖片目錄,i為分類(lèi)標(biāo)簽
for rt, dirs, files in os.walk(dir):
for filename in files:
input_count += 1
# 定義對(duì)應(yīng)維數(shù)和各維長(zhǎng)度的數(shù)組
input_images = np.array([[0]*SIZE for i in range(input_count)])
input_labels = np.array([[0]*NUM_CLASSES for i in range(input_count)])
# 第二次遍歷圖片目錄是為了生成圖片數(shù)據(jù)和標(biāo)簽
index = 0
for i in range(0,NUM_CLASSES):
dir = './train_images/training-set/%s/' % i # 這里可以改成你自己的圖片目錄,i為分類(lèi)標(biāo)簽
for rt, dirs, files in os.walk(dir):
for filename in files:
filename = dir + filename
img = Image.open(filename)
width = img.size[0]
height = img.size[1]
for h in range(0, height):
for w in range(0, width):
# 通過(guò)這樣的處理,使數(shù)字的線條變細(xì),有利于提高識(shí)別準(zhǔn)確率
if img.getpixel((w, h)) > 230:
input_images[index][w+h*width] = 0
else:
input_images[index][w+h*width] = 1
input_labels[index][i] = 1
index += 1
# 第一次遍歷圖片目錄是為了獲取圖片總數(shù)
val_count = 0
for i in range(0,NUM_CLASSES):
dir = './train_images/validation-set/%s/' % i # 這里可以改成你自己的圖片目錄,i為分類(lèi)標(biāo)簽
for rt, dirs, files in os.walk(dir):
for filename in files:
val_count += 1
# 定義對(duì)應(yīng)維數(shù)和各維長(zhǎng)度的數(shù)組
val_images = np.array([[0]*SIZE for i in range(val_count)])
val_labels = np.array([[0]*NUM_CLASSES for i in range(val_count)])
# 第二次遍歷圖片目錄是為了生成圖片數(shù)據(jù)和標(biāo)簽
index = 0
for i in range(0,NUM_CLASSES):
dir = './train_images/validation-set/%s/' % i # 這里可以改成你自己的圖片目錄,i為分類(lèi)標(biāo)簽
for rt, dirs, files in os.walk(dir):
for filename in files:
filename = dir + filename
img = Image.open(filename)
width = img.size[0]
height = img.size[1]
for h in range(0, height):
for w in range(0, width):
# 通過(guò)這樣的處理,使數(shù)字的線條變細(xì),有利于提高識(shí)別準(zhǔn)確率
if img.getpixel((w, h)) > 230:
val_images[index][w+h*width] = 0
else:
val_images[index][w+h*width] = 1
val_labels[index][i] = 1
index += 1
with tf.Session() as sess:
# 第一個(gè)卷積層
W_conv1 = tf.Variable(tf.truncated_normal([8, 8, 1, 16], stddev=0.1), name="W_conv1")
b_conv1 = tf.Variable(tf.constant(0.1, shape=[16]), name="b_conv1")
conv_strides = [1, 1, 1, 1]
kernel_size = [1, 2, 2, 1]
pool_strides = [1, 2, 2, 1]
L1_pool = conv_layer(x_image, W_conv1, b_conv1, conv_strides, kernel_size, pool_strides, padding='SAME')
# 第二個(gè)卷積層
W_conv2 = tf.Variable(tf.truncated_normal([5, 5, 16, 32], stddev=0.1), name="W_conv2")
b_conv2 = tf.Variable(tf.constant(0.1, shape=[32]), name="b_conv2")
conv_strides = [1, 1, 1, 1]
kernel_size = [1, 1, 1, 1]
pool_strides = [1, 1, 1, 1]
L2_pool = conv_layer(L1_pool, W_conv2, b_conv2, conv_strides, kernel_size, pool_strides, padding='SAME')
# 全連接層
W_fc1 = tf.Variable(tf.truncated_normal([16 * 20 * 32, 512], stddev=0.1), name="W_fc1")
b_fc1 = tf.Variable(tf.constant(0.1, shape=[512]), name="b_fc1")
h_pool2_flat = tf.reshape(L2_pool, [-1, 16 * 20*32])
h_fc1 = full_connect(h_pool2_flat, W_fc1, b_fc1)
# dropout
keep_prob = tf.placeholder(tf.float32)
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
# readout層
W_fc2 = tf.Variable(tf.truncated_normal([512, NUM_CLASSES], stddev=0.1), name="W_fc2")
b_fc2 = tf.Variable(tf.constant(0.1, shape=[NUM_CLASSES]), name="b_fc2")
# 定義優(yōu)化器和訓(xùn)練op
y_conv = tf.matmul(h_fc1_drop, W_fc2) + b_fc2
cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=y_conv))
train_step = tf.train.AdamOptimizer((1e-4)).minimize(cross_entropy)
correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.argmax(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
sess.run(tf.global_variables_initializer())
time_elapsed = time.time() - time_begin
print("讀取圖片文件耗費(fèi)時(shí)間:%d秒" % time_elapsed)
time_begin = time.time()
print ("一共讀取了 %s 個(gè)訓(xùn)練圖像, %s 個(gè)標(biāo)簽" % (input_count, input_count))
# 設(shè)置每次訓(xùn)練op的輸入個(gè)數(shù)和迭代次數(shù),這里為了支持任意圖片總數(shù),定義了一個(gè)余數(shù)remainder,譬如,如果每次訓(xùn)練op的輸入個(gè)數(shù)為60,圖片總數(shù)為150張,則前面兩次各輸入60張,最后一次輸入30張(余數(shù)30)
batch_size = 60
iterations = iterations
batches_count = int(input_count / batch_size)
remainder = input_count % batch_size
print ("訓(xùn)練數(shù)據(jù)集分成 %s 批, 前面每批 %s 個(gè)數(shù)據(jù),最后一批 %s 個(gè)數(shù)據(jù)" % (batches_count+1, batch_size, remainder))
# 執(zhí)行訓(xùn)練迭代
for it in range(iterations):
# 這里的關(guān)鍵是要把輸入數(shù)組轉(zhuǎn)為np.array
for n in range(batches_count):
train_step.run(feed_dict={x: input_images[n*batch_size:(n+1)*batch_size], y_: input_labels[n*batch_size:(n+1)*batch_size], keep_prob: 0.5})
if remainder > 0:
start_index = batches_count * batch_size;
train_step.run(feed_dict={x: input_images[start_index:input_count-1], y_: input_labels[start_index:input_count-1], keep_prob: 0.5})
# 每完成五次迭代,判斷準(zhǔn)確度是否已達(dá)到100%,達(dá)到則退出迭代循環(huán)
iterate_accuracy = 0
if it%5 == 0:
iterate_accuracy = accuracy.eval(feed_dict={x: val_images, y_: val_labels, keep_prob: 1.0})
print ('第 %d 次訓(xùn)練迭代: 準(zhǔn)確率 %0.5f%%' % (it, iterate_accuracy*100))
if iterate_accuracy >= 0.9999 and it >= iterations:
break;
print ('完成訓(xùn)練!')
time_elapsed = time.time() - time_begin
print ("訓(xùn)練耗費(fèi)時(shí)間:%d秒" % time_elapsed)
time_begin = time.time()
# 保存訓(xùn)練結(jié)果
if not os.path.exists(SAVER_DIR):
print ('不存在訓(xùn)練數(shù)據(jù)保存目錄,現(xiàn)在創(chuàng)建保存目錄')
os.makedirs(SAVER_DIR)
# 初始化saver
saver = tf.train.Saver()
saver_path = saver.save(sess, "%smodel.ckpt"%(SAVER_DIR))
if __name__ =='__main__' and sys.argv[1]=='predict':
saver = tf.train.import_meta_graph("%smodel.ckpt.meta"%(SAVER_DIR))
with tf.Session() as sess:
model_file=tf.train.latest_checkpoint(SAVER_DIR)
saver.restore(sess, model_file)
# 第一個(gè)卷積層
W_conv1 = sess.graph.get_tensor_by_name("W_conv1:0")
b_conv1 = sess.graph.get_tensor_by_name("b_conv1:0")
conv_strides = [1, 1, 1, 1]
kernel_size = [1, 2, 2, 1]
pool_strides = [1, 2, 2, 1]
L1_pool = conv_layer(x_image, W_conv1, b_conv1, conv_strides, kernel_size, pool_strides, padding='SAME')
# 第二個(gè)卷積層
W_conv2 = sess.graph.get_tensor_by_name("W_conv2:0")
b_conv2 = sess.graph.get_tensor_by_name("b_conv2:0")
conv_strides = [1, 1, 1, 1]
kernel_size = [1, 1, 1, 1]
pool_strides = [1, 1, 1, 1]
L2_pool = conv_layer(L1_pool, W_conv2, b_conv2, conv_strides, kernel_size, pool_strides, padding='SAME')
# 全連接層
W_fc1 = sess.graph.get_tensor_by_name("W_fc1:0")
b_fc1 = sess.graph.get_tensor_by_name("b_fc1:0")
h_pool2_flat = tf.reshape(L2_pool, [-1, 16 * 20*32])
h_fc1 = full_connect(h_pool2_flat, W_fc1, b_fc1)
# dropout
keep_prob = tf.placeholder(tf.float32)
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
# readout層
W_fc2 = sess.graph.get_tensor_by_name("W_fc2:0")
b_fc2 = sess.graph.get_tensor_by_name("b_fc2:0")
# 定義優(yōu)化器和訓(xùn)練op
conv = tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)
for n in range(3,8):
path = "test_images/%s.bmp" % (n)
img = Image.open(path)
width = img.size[0]
height = img.size[1]
img_data = [[0]*SIZE for i in range(1)]
for h in range(0, height):
for w in range(0, width):
if img.getpixel((w, h)) < 190:
img_data[0][w+h*width] = 1
else:
img_data[0][w+h*width] = 0
result = sess.run(conv, feed_dict = {x: np.array(img_data), keep_prob: 1.0})
max1 = 0
max2 = 0
max3 = 0
max1_index = 0
max2_index = 0
max3_index = 0
for j in range(NUM_CLASSES):
if result[0][j] > max1:
max1 = result[0][j]
max1_index = j
continue
if (result[0][j]>max2) and (result[0][j]<=max1):
max2 = result[0][j]
max2_index = j
continue
if (result[0][j]>max3) and (result[0][j]<=max2):
max3 = result[0][j]
max3_index = j
continue
license_num = license_num + LETTERS_DIGITS[max1_index]
print ("概率: [%s %0.2f%%] [%s %0.2f%%] [%s %0.2f%%]" % (LETTERS_DIGITS[max1_index],max1*100, LETTERS_DIGITS[max2_index],max2*100, LETTERS_DIGITS[max3_index],max3*100))
print ("車(chē)牌編號(hào)是: 【%s】" % license_num)
保存好上面三個(gè)python腳本后,我們首先進(jìn)行省份簡(jiǎn)稱(chēng)訓(xùn)練。在運(yùn)行代碼之前,需要先把數(shù)據(jù)集解壓到訓(xùn)練腳本所在目錄。然后,在命令行中進(jìn)入腳本所在目錄,輸入執(zhí)行如下命令:
python train-license-province.py train
訓(xùn)練結(jié)果如下:

然后進(jìn)行省份簡(jiǎn)稱(chēng)識(shí)別,在命令行輸入執(zhí)行如下命令:
python train-license-province.py predict

執(zhí)行城市代號(hào)訓(xùn)練(相當(dāng)于訓(xùn)練26個(gè)字母):
python train-license-letters.py train

識(shí)別城市代號(hào):
python train-license-letters.py predict

執(zhí)行車(chē)牌編號(hào)訓(xùn)練(相當(dāng)于訓(xùn)練24個(gè)字母+10個(gè)數(shù)字,我國(guó)交通法規(guī)規(guī)定車(chē)牌編號(hào)中不包含字母I和O):
python train-license-digits.py train

識(shí)別車(chē)牌編號(hào):
python train-license-digits.py predict

可以看到,在測(cè)試圖片上,識(shí)別準(zhǔn)確率很高。識(shí)別結(jié)果是閩O-1672Q。
下圖是測(cè)試圖片的車(chē)牌原圖:

以上就是本文的全部?jī)?nèi)容,希望對(duì)大家的學(xué)習(xí)有所幫助,也希望大家多多支持腳本之家。
- 基于Tensorflow讀取MNIST數(shù)據(jù)集時(shí)網(wǎng)絡(luò)超時(shí)的解決方式
- tensorflow實(shí)現(xiàn)殘差網(wǎng)絡(luò)方式(mnist數(shù)據(jù)集)
- 使用tensorflow實(shí)現(xiàn)VGG網(wǎng)絡(luò),訓(xùn)練mnist數(shù)據(jù)集方式
- TensorFlow2.X使用圖片制作簡(jiǎn)單的數(shù)據(jù)集訓(xùn)練模型
- C#使用TensorFlow.NET訓(xùn)練自己的數(shù)據(jù)集的方法
- TensorFlow基于MNIST數(shù)據(jù)集實(shí)現(xiàn)車(chē)牌識(shí)別(初步演示版)
- 詳解如何從TensorFlow的mnist數(shù)據(jù)集導(dǎo)出手寫(xiě)體數(shù)字圖片
- tensorflow實(shí)現(xiàn)加載mnist數(shù)據(jù)集
- Tensorflow 訓(xùn)練自己的數(shù)據(jù)集將數(shù)據(jù)直接導(dǎo)入到內(nèi)存
- 詳解tensorflow訓(xùn)練自己的數(shù)據(jù)集實(shí)現(xiàn)CNN圖像分類(lèi)
- Tensorflow之構(gòu)建自己的圖片數(shù)據(jù)集TFrecords的方法
- 如何從csv文件構(gòu)建Tensorflow的數(shù)據(jù)集
相關(guān)文章
Python利用裝飾器click處理解析命令行參數(shù)
這篇文章主要為大家詳細(xì)介紹了Python如何利用裝飾器click實(shí)現(xiàn)處理解析命令行參數(shù)功能,文中的示例代碼簡(jiǎn)潔易懂,需要的小伙伴快跟隨小編一起了解一下2022-10-10
使用TensorFlow直接獲取處理MNIST數(shù)據(jù)方式
今天小編就為大家分享一篇使用TensorFlow直接獲取處理MNIST數(shù)據(jù)方式,具有很好的參考價(jià)值,希望對(duì)大家有所幫助。一起跟隨小編過(guò)來(lái)看看吧2020-02-02
基于使用paramiko執(zhí)行遠(yuǎn)程linux主機(jī)命令(詳解)
下面小編就為大家?guī)?lái)一篇基于使用paramiko執(zhí)行遠(yuǎn)程linux主機(jī)命令(詳解)。小編覺(jué)得挺不錯(cuò)的,現(xiàn)在就分享給大家,也給大家做個(gè)參考。一起跟隨小編過(guò)來(lái)看看吧2017-10-10
python使用UDP實(shí)現(xiàn)客戶端和服務(wù)器對(duì)話
這篇文章主要為大家介紹了python使用UDP實(shí)現(xiàn)客戶端和服務(wù)器對(duì)話示例詳解,有需要的朋友可以借鑒參考下,希望能夠有所幫助,祝大家多多進(jìn)步,早日升職加薪2023-03-03
Python+Pygame實(shí)現(xiàn)簡(jiǎn)單的單詞小游戲
語(yǔ)言是一種藝術(shù),但是作為語(yǔ)言的基礎(chǔ)——詞匯,卻不像藝術(shù)那樣賞心悅目。不斷的記憶與復(fù)習(xí),讓詞匯成為很多孩子在學(xué)習(xí)英語(yǔ)時(shí),最難完全攻克的關(guān)卡。本文就來(lái)用Python制作一個(gè)簡(jiǎn)單的英語(yǔ)單詞游戲吧2023-03-03
對(duì)Python中TKinter模塊中的Label組件實(shí)例詳解
今天小編就為大家分享一篇對(duì)Python中TKinter模塊中的Label組件實(shí)例詳解,具有很好的價(jià)值,希望對(duì)大家有所幫助。一起跟隨小編過(guò)來(lái)看看吧2019-06-06
Django實(shí)現(xiàn)web端tailf日志文件功能及實(shí)例詳解
這篇文章主要介紹了Django實(shí)現(xiàn)web端tailf日志文件功能,本文通過(guò)實(shí)例給大家介紹的非常詳細(xì),具有一定的參考借鑒價(jià)值,需要的朋友可以參考下2019-07-07
python實(shí)現(xiàn)web應(yīng)用框架之增加響應(yīng)對(duì)象
這篇文章主要介紹了python利用web應(yīng)用框架如何增加響應(yīng)對(duì)象的,文中有相應(yīng)的代碼示例,對(duì)大家的學(xué)習(xí)或工作有一定的參考價(jià)值,需要的同學(xué)可以參考下2023-05-05

