python 機(jī)器學(xué)習(xí)之支持向量機(jī)非線性回歸SVR模型
更新時(shí)間:2019年06月26日 09:56:25 作者:吳裕雄
這篇文章主要介紹了python 機(jī)器學(xué)習(xí)之支持向量機(jī)非線性回歸SVR模型,文中通過(guò)示例代碼介紹的非常詳細(xì),對(duì)大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價(jià)值,需要的朋友們下面隨著小編來(lái)一起學(xué)習(xí)學(xué)習(xí)吧
本文介紹了python 支持向量機(jī)非線性回歸SVR模型,廢話不多說(shuō),具體如下:
import numpy as np
import matplotlib.pyplot as plt
from sklearn import datasets, linear_model,svm
from sklearn.model_selection import train_test_split
def load_data_regression():
'''
加載用于回歸問(wèn)題的數(shù)據(jù)集
'''
diabetes = datasets.load_diabetes() #使用 scikit-learn 自帶的一個(gè)糖尿病病人的數(shù)據(jù)集
# 拆分成訓(xùn)練集和測(cè)試集,測(cè)試集大小為原始數(shù)據(jù)集大小的 1/4
return train_test_split(diabetes.data,diabetes.target,test_size=0.25,random_state=0)
#支持向量機(jī)非線性回歸SVR模型
def test_SVR_linear(*data):
X_train,X_test,y_train,y_test=data
regr=svm.SVR(kernel='linear')
regr.fit(X_train,y_train)
print('Coefficients:%s, intercept %s'%(regr.coef_,regr.intercept_))
print('Score: %.2f' % regr.score(X_test, y_test))
# 生成用于回歸問(wèn)題的數(shù)據(jù)集
X_train,X_test,y_train,y_test=load_data_regression()
# 調(diào)用 test_LinearSVR
test_SVR_linear(X_train,X_test,y_train,y_test)

def test_SVR_poly(*data):
'''
測(cè)試 多項(xiàng)式核的 SVR 的預(yù)測(cè)性能隨 degree、gamma、coef0 的影響.
'''
X_train,X_test,y_train,y_test=data
fig=plt.figure()
### 測(cè)試 degree ####
degrees=range(1,20)
train_scores=[]
test_scores=[]
for degree in degrees:
regr=svm.SVR(kernel='poly',degree=degree,coef0=1)
regr.fit(X_train,y_train)
train_scores.append(regr.score(X_train,y_train))
test_scores.append(regr.score(X_test, y_test))
ax=fig.add_subplot(1,3,1)
ax.plot(degrees,train_scores,label="Training score ",marker='+' )
ax.plot(degrees,test_scores,label= " Testing score ",marker='o' )
ax.set_title( "SVR_poly_degree r=1")
ax.set_xlabel("p")
ax.set_ylabel("score")
ax.set_ylim(-1,1.)
ax.legend(loc="best",framealpha=0.5)
### 測(cè)試 gamma,固定 degree為3, coef0 為 1 ####
gammas=range(1,40)
train_scores=[]
test_scores=[]
for gamma in gammas:
regr=svm.SVR(kernel='poly',gamma=gamma,degree=3,coef0=1)
regr.fit(X_train,y_train)
train_scores.append(regr.score(X_train,y_train))
test_scores.append(regr.score(X_test, y_test))
ax=fig.add_subplot(1,3,2)
ax.plot(gammas,train_scores,label="Training score ",marker='+' )
ax.plot(gammas,test_scores,label= " Testing score ",marker='o' )
ax.set_title( "SVR_poly_gamma r=1")
ax.set_xlabel(r"$\gamma$")
ax.set_ylabel("score")
ax.set_ylim(-1,1)
ax.legend(loc="best",framealpha=0.5)
### 測(cè)試 r,固定 gamma 為 20,degree為 3 ######
rs=range(0,20)
train_scores=[]
test_scores=[]
for r in rs:
regr=svm.SVR(kernel='poly',gamma=20,degree=3,coef0=r)
regr.fit(X_train,y_train)
train_scores.append(regr.score(X_train,y_train))
test_scores.append(regr.score(X_test, y_test))
ax=fig.add_subplot(1,3,3)
ax.plot(rs,train_scores,label="Training score ",marker='+' )
ax.plot(rs,test_scores,label= " Testing score ",marker='o' )
ax.set_title( "SVR_poly_r gamma=20 degree=3")
ax.set_xlabel(r"r")
ax.set_ylabel("score")
ax.set_ylim(-1,1.)
ax.legend(loc="best",framealpha=0.5)
plt.show()
# 調(diào)用 test_SVR_poly
test_SVR_poly(X_train,X_test,y_train,y_test)

def test_SVR_rbf(*data):
'''
測(cè)試 高斯核的 SVR 的預(yù)測(cè)性能隨 gamma 參數(shù)的影響
'''
X_train,X_test,y_train,y_test=data
gammas=range(1,20)
train_scores=[]
test_scores=[]
for gamma in gammas:
regr=svm.SVR(kernel='rbf',gamma=gamma)
regr.fit(X_train,y_train)
train_scores.append(regr.score(X_train,y_train))
test_scores.append(regr.score(X_test, y_test))
fig=plt.figure()
ax=fig.add_subplot(1,1,1)
ax.plot(gammas,train_scores,label="Training score ",marker='+' )
ax.plot(gammas,test_scores,label= " Testing score ",marker='o' )
ax.set_title( "SVR_rbf")
ax.set_xlabel(r"$\gamma$")
ax.set_ylabel("score")
ax.set_ylim(-1,1)
ax.legend(loc="best",framealpha=0.5)
plt.show()
# 調(diào)用 test_SVR_rbf
test_SVR_rbf(X_train,X_test,y_train,y_test)

def test_SVR_sigmoid(*data):
'''
測(cè)試 sigmoid 核的 SVR 的預(yù)測(cè)性能隨 gamma、coef0 的影響.
'''
X_train,X_test,y_train,y_test=data
fig=plt.figure()
### 測(cè)試 gammam,固定 coef0 為 0.01 ####
gammas=np.logspace(-1,3)
train_scores=[]
test_scores=[]
for gamma in gammas:
regr=svm.SVR(kernel='sigmoid',gamma=gamma,coef0=0.01)
regr.fit(X_train,y_train)
train_scores.append(regr.score(X_train,y_train))
test_scores.append(regr.score(X_test, y_test))
ax=fig.add_subplot(1,2,1)
ax.plot(gammas,train_scores,label="Training score ",marker='+' )
ax.plot(gammas,test_scores,label= " Testing score ",marker='o' )
ax.set_title( "SVR_sigmoid_gamma r=0.01")
ax.set_xscale("log")
ax.set_xlabel(r"$\gamma$")
ax.set_ylabel("score")
ax.set_ylim(-1,1)
ax.legend(loc="best",framealpha=0.5)
### 測(cè)試 r ,固定 gamma 為 10 ######
rs=np.linspace(0,5)
train_scores=[]
test_scores=[]
for r in rs:
regr=svm.SVR(kernel='sigmoid',coef0=r,gamma=10)
regr.fit(X_train,y_train)
train_scores.append(regr.score(X_train,y_train))
test_scores.append(regr.score(X_test, y_test))
ax=fig.add_subplot(1,2,2)
ax.plot(rs,train_scores,label="Training score ",marker='+' )
ax.plot(rs,test_scores,label= " Testing score ",marker='o' )
ax.set_title( "SVR_sigmoid_r gamma=10")
ax.set_xlabel(r"r")
ax.set_ylabel("score")
ax.set_ylim(-1,1)
ax.legend(loc="best",framealpha=0.5)
plt.show()
# 調(diào)用 test_SVR_sigmoid
test_SVR_sigmoid(X_train,X_test,y_train,y_test)

以上就是本文的全部?jī)?nèi)容,希望對(duì)大家的學(xué)習(xí)有所幫助,也希望大家多多支持腳本之家。
相關(guān)文章
Python趣味挑戰(zhàn)之pygame實(shí)現(xiàn)無(wú)敵好看的百葉窗動(dòng)態(tài)效果
最近寫了很多期關(guān)于pygame的案例和知識(shí)點(diǎn),自己也收獲了很多知識(shí),也在這個(gè)過(guò)程中成長(zhǎng)了不少, 這次還是圍繞surface對(duì)象進(jìn)行詳細(xì)介紹,并形成完整的案例過(guò)程,文中有非常詳細(xì)實(shí)現(xiàn)百葉窗動(dòng)態(tài)效果的代碼示例,需要的朋友可以參考下2021-05-05
OpenCV利用手勢(shì)識(shí)別實(shí)現(xiàn)虛擬拖放效果
這篇文章主要介紹了利用OpenCV實(shí)現(xiàn)手勢(shì)識(shí)別,從而進(jìn)行虛擬拖放效果,我們可以使用這個(gè)技術(shù)實(shí)現(xiàn)一些游戲,控制機(jī)械臂等很多有趣的事情。感興趣的可以學(xué)習(xí)一下2022-01-01
python中Switch/Case實(shí)現(xiàn)的示例代碼
本篇文章主要介紹了python中Switch/Case實(shí)現(xiàn)的示例代碼,小編覺(jué)得挺不錯(cuò)的,現(xiàn)在分享給大家,也給大家做個(gè)參考。一起跟隨小編過(guò)來(lái)看看吧2017-11-11
Pytest使用fixture實(shí)現(xiàn)token共享的方法
同學(xué)們?cè)谧鰌ytest接口自動(dòng)化時(shí),會(huì)遇到一個(gè)場(chǎng)景就是不同的測(cè)試用例需要有一個(gè)登錄的前置步驟,登錄完成后會(huì)獲取到token,用于之后的代碼中,本文給大家介紹Pytest使用fixture實(shí)現(xiàn)token共享的方法,感興趣的朋友一起看看吧2023-11-11

