【python】matplotlib動(dòng)態(tài)顯示詳解
1.matplotlib動(dòng)態(tài)繪圖
python在繪圖的時(shí)候,需要開啟 interactive mode。核心代碼如下:
plt.ion(); #開啟interactive mode 成功的關(guān)鍵函數(shù)
fig = plt.figure(1);
for i in range(100):
filepath="E:/Model/weights-improvement-" + str(i + 1) + ".hdf5";
model.load_weights(filepath);
#測(cè)試數(shù)據(jù)
x_new = np.linspace(low, up, 1000);
y_new = getfit(model,x_new);
# 顯示數(shù)據(jù)
plt.clf();
plt.plot(x,y);
plt.scatter(x_sample, y_sample);
plt.plot(x_new,y_new);
ffpath = "E:/imgs/" + str(i) + ".jpg";
plt.savefig(ffpath);
plt.pause(0.01) # 暫停0.01秒
ani = animation.FuncAnimation(plt.figure(2), update,range(100),init_func=init, interval=500);
ani.save("E:/test.gif",writer='pillow');
plt.ioff() # 關(guān)閉交互模式
2.實(shí)例
已知下面采樣自Sin函數(shù)的數(shù)據(jù):
| x | y | |
| 1 | 0.093 | -0.81 |
| 2 | 0.58 | -0.45 |
| 3 | 1.04 | -0.007 |
| 4 | 1.55 | 0.48 |
| 5 | 2.15 | 0.89 |
| 6 | 2.62 | 0.997 |
| 7 | 2.71 | 0.995 |
| 8 | 2.73 | 0.993 |
| 9 | 3.03 | 0.916 |
| 10 | 3.14 | 0.86 |
| 11 | 3.58 | 0.57 |
| 12 | 3.66 | 0.504 |
| 13 | 3.81 | 0.369 |
| 14 | 3.83 | 0.35 |
| 15 | 4.39 | -0.199 |
| 16 | 4.44 | -0.248 |
| 17 | 4.6 | -0.399 |
| 18 | 5.39 | -0.932 |
| 19 | 5.54 | -0.975 |
| 20 | 5.76 | -0.999 |
通過一個(gè)簡單的三層神經(jīng)網(wǎng)絡(luò)訓(xùn)練一個(gè)Sin函數(shù)的擬合器,并可視化模型訓(xùn)練過程的擬合曲線。

2.1 網(wǎng)絡(luò)訓(xùn)練實(shí)現(xiàn)
主要做的事情是定義一個(gè)三層的神經(jīng)網(wǎng)絡(luò),輸入層節(jié)點(diǎn)數(shù)為1,隱藏層節(jié)點(diǎn)數(shù)為10,輸出層節(jié)點(diǎn)數(shù)為1。
import math;
import random;
from matplotlib import pyplot as plt
from keras.models import Sequential
from keras.layers.core import Dense
from keras.optimizers import Adam
import numpy as np
from keras.callbacks import ModelCheckpoint
import os
#采樣函數(shù)
def sample(low, up, num):
data = [];
for i in range(num):
#采樣
tmp = random.uniform(low, up);
data.append(tmp);
data.sort();
return data;
#sin函數(shù)
def func(x):
y = [];
for i in range(len(x)):
tmp = math.sin(x[i] - math.pi/3);
y.append(tmp);
return y;
#獲取模型擬合結(jié)果
def getfit(model,x):
y = [];
for i in range(len(x)):
tmp = model.predict([x[i]], 10);
y.append(tmp[0][0]);
return y;
#刪除同一目錄下的所有文件
def del_file(path):
ls = os.listdir(path)
for i in ls:
c_path = os.path.join(path, i)
if os.path.isdir(c_path):
del_file(c_path)
else:
os.remove(c_path)
if __name__ == '__main__':
path = "E:/Model/";
del_file(path);
low = 0;
up = 2 * math.pi;
x = np.linspace(low, up, 1000);
y = func(x);
# 數(shù)據(jù)采樣
# x_sample = sample(low,up,20);
x_sample = [0.09326442022999694, 0.5812590520508311, 1.040490143783586, 1.5504427746047338, 2.1589557183817036, 2.6235357787018407, 2.712578091093361, 2.7379109336528167, 3.0339662651841186, 3.147676812083248, 3.58596337171837, 3.6621496731124314, 3.81130899864203, 3.833092859928872, 4.396611340802901, 4.4481080339256875, 4.609657879057151, 5.399731063412583, 5.54299720786794, 5.764084730699906];
y_sample = func(x_sample);
# callback
filepath="E:/Model/weights-improvement-{epoch:00d}.hdf5";
checkpoint= ModelCheckpoint(filepath, verbose=1, save_best_only=False, mode='max');
callbacks_list= [checkpoint];
# 建立順序神經(jīng)網(wǎng)絡(luò)層次模型
model = Sequential();
model.add(Dense(10, input_dim=1, init='uniform', activation='relu'));
model.add(Dense(1, init='uniform', activation='tanh'));
adam = Adam(lr = 0.05);
model.compile(loss='mean_squared_error', optimizer=adam, metrics=['accuracy']);
model.fit(x_sample, y_sample, nb_epoch=1000, batch_size=20,callbacks=callbacks_list);
#測(cè)試數(shù)據(jù)
x_new = np.linspace(low, up, 1000);
y_new = getfit(model,x_new);
# 數(shù)據(jù)可視化
plt.plot(x,y);
plt.scatter(x_sample, y_sample);
plt.plot(x_new,y_new);
plt.show();
2.2 模型保存
在神經(jīng)網(wǎng)絡(luò)訓(xùn)練的過程中,有一個(gè)非常重要的操作,就是將訓(xùn)練過程中模型的參數(shù)保存到本地,這是后面擬合過程可視化的基礎(chǔ)。訓(xùn)練過程中保存的模型文件,如下圖所示。

模型保存的關(guān)鍵在于fit函數(shù)中callback函數(shù)的設(shè)置,注意到,下面的代碼,每次迭代,算法都會(huì)執(zhí)行callbacks函數(shù)指定的函數(shù)列表中的方法。這里,我們的回調(diào)函數(shù)設(shè)置為ModelCheckpoint,其參數(shù)如下表所示:
| 參數(shù) | 含義 |
| filename | 字符串,保存模型的路徑 |
| verbose |
信息展示模式,0或1 (Epoch 00001: saving model to ...) |
| mode | ‘a(chǎn)uto',‘min',‘max' |
| monitor | 需要監(jiān)視的值 |
| save_best_only | 當(dāng)設(shè)置為True時(shí),監(jiān)測(cè)值有改進(jìn)時(shí)才會(huì)保存當(dāng)前的模型。在save_best_only=True時(shí)決定性能最佳模型的評(píng)判準(zhǔn)則,例如,當(dāng)監(jiān)測(cè)值為val_acc時(shí),模式應(yīng)為max,當(dāng)監(jiān)測(cè)值為val_loss時(shí),模式應(yīng)為min。在auto模式下,評(píng)價(jià)準(zhǔn)則由被監(jiān)測(cè)值的名字自動(dòng)推斷 |
| save_weights_only | 若設(shè)置為True,則只保存模型權(quán)重,否則將保存整個(gè)模型(包括模型結(jié)構(gòu),配置信息等) |
| period | CheckPoint之間的間隔的epoch數(shù) |
# callback
filepath="E:/Model/weights-improvement-{epoch:00d}.hdf5";
checkpoint= ModelCheckpoint(filepath, verbose=1, save_best_only=False, mode='max');
callbacks_list= [checkpoint];
# 建立順序神經(jīng)網(wǎng)絡(luò)層次模型
model = Sequential();
model.add(Dense(10, input_dim=1, init='uniform', activation='relu'));
model.add(Dense(1, init='uniform', activation='tanh'));
adam = Adam(lr = 0.05);
model.compile(loss='mean_squared_error', optimizer=adam, metrics=['accuracy']);
model.fit(x_sample, y_sample, nb_epoch=1000, batch_size=20,callbacks=callbacks_list);
2.3 擬合過程可視化實(shí)現(xiàn)
利用上述保存的模型,我們就可以通過matplotlib實(shí)時(shí)地顯示擬合過程。
import math;
import random;
from matplotlib import pyplot as plt
from keras.models import Sequential
from keras.layers.core import Dense
import numpy as np
import matplotlib.animation as animation
from PIL import Image
#定義kdd99數(shù)據(jù)預(yù)處理函數(shù)
def sample(low, up, num):
data = [];
for i in range(num):
#采樣
tmp = random.uniform(low, up);
data.append(tmp);
data.sort();
return data;
def func(x):
y = [];
for i in range(len(x)):
tmp = math.sin(x[i] - math.pi/3);
y.append(tmp);
return y;
def getfit(model,x):
y = [];
for i in range(len(x)):
tmp = model.predict([x[i]], 10);
y.append(tmp[0][0]);
return y;
def init():
fpath = "E:/imgs/0.jpg";
img = Image.open(fpath);
plt.axis('off') # 關(guān)掉坐標(biāo)軸為 off
return plt.imshow(img);
def update(i):
fpath = "E:/imgs/" + str(i) + ".jpg";
img = Image.open(fpath);
plt.axis('off') # 關(guān)掉坐標(biāo)軸為 off
return plt.imshow(img);
if __name__ == '__main__':
low = 0;
up = 2 * math.pi;
x = np.linspace(low, up, 1000);
y = func(x);
# 數(shù)據(jù)采樣
# x_sample = sample(low,up,20);
x_sample = [0.09326442022999694, 0.5812590520508311, 1.040490143783586, 1.5504427746047338, 2.1589557183817036, 2.6235357787018407, 2.712578091093361, 2.7379109336528167, 3.0339662651841186, 3.147676812083248, 3.58596337171837, 3.6621496731124314, 3.81130899864203, 3.833092859928872, 4.396611340802901, 4.4481080339256875, 4.609657879057151, 5.399731063412583, 5.54299720786794, 5.764084730699906];
y_sample = func(x_sample);
# 建立順序神經(jīng)網(wǎng)絡(luò)層次模型
model = Sequential();
model.add(Dense(10, input_dim=1, init='uniform', activation='relu'));
model.add(Dense(1, init='uniform', activation='tanh'));
plt.ion(); #開啟interactive mode 成功的關(guān)鍵函數(shù)
fig = plt.figure(1);
for i in range(100):
filepath="E:/Model/weights-improvement-" + str(i + 1) + ".hdf5";
model.load_weights(filepath);
#測(cè)試數(shù)據(jù)
x_new = np.linspace(low, up, 1000);
y_new = getfit(model,x_new);
# 顯示數(shù)據(jù)
plt.clf();
plt.plot(x,y);
plt.scatter(x_sample, y_sample);
plt.plot(x_new,y_new);
ffpath = "E:/imgs/" + str(i) + ".jpg";
plt.savefig(ffpath);
plt.pause(0.01) # 暫停0.01秒
ani = animation.FuncAnimation(plt.figure(2), update,range(100),init_func=init, interval=500);
ani.save("E:/test.gif",writer='pillow');
plt.ioff()

以上所述是小編給大家介紹的matplotlib動(dòng)態(tài)顯示詳解整合,希望對(duì)大家有所幫助,如果大家有任何疑問請(qǐng)給我留言,小編會(huì)及時(shí)回復(fù)大家的。在此也非常感謝大家對(duì)腳本之家網(wǎng)站的支持!
相關(guān)文章
Python基于自然語言處理開發(fā)文本摘要系統(tǒng)
自然語言處理(NLP)是人工智能領(lǐng)域中一個(gè)重要的研究方向,而文本摘要作為NLP的一個(gè)重要應(yīng)用,在信息爆炸的時(shí)代具有重要意義,下面我們來看看如何開發(fā)一個(gè)基于Python的文本摘要系統(tǒng)吧2025-04-04
python?ocr簡單示例之識(shí)別驗(yàn)證碼
OCR(Optical character recognition,光學(xué)字符識(shí)別)是一種將圖像中的手寫字或者印刷文本轉(zhuǎn)換為機(jī)器編碼文本的技術(shù),下面這篇文章主要給大家介紹了關(guān)于python?ocr簡單示例之識(shí)別驗(yàn)證碼的相關(guān)資料,需要的朋友可以參考下2023-01-01
numpy 進(jìn)行數(shù)組拼接,分別在行和列上合并的實(shí)例
今天小編就為大家分享一篇numpy 進(jìn)行數(shù)組拼接,分別在行和列上合并的實(shí)例,具有很好的參考價(jià)值,希望對(duì)大家有所幫助。一起跟隨小編過來看看吧2018-05-05
Python基于scrapy采集數(shù)據(jù)時(shí)使用代理服務(wù)器的方法
這篇文章主要介紹了Python基于scrapy采集數(shù)據(jù)時(shí)使用代理服務(wù)器的方法,涉及Python使用代理服務(wù)器的技巧,具有一定參考借鑒價(jià)值,需要的朋友可以參考下2015-04-04

