使用matplotlib中scatter方法畫散點圖
本文實例為大家分享了用matplotlib中scatter方法畫散點圖的具體代碼,供大家參考,具體內容如下
1、最簡單的繪制方式
繪制散點圖是數據分析過程中的常見需求。python中最有名的畫圖工具是matplotlib,matplotlib中的scatter方法可以方便實現(xiàn)畫散點圖的需求。下面我們來繪制一個最簡單的散點圖。
數據格式如下:
0 746403
1 1263043
2 982360
3 1202602
...
其中第一列為X坐標,第二列為Y坐標。下面我們來畫圖。
#!/usr/bin/env python
#coding:utf-8
import matplotlib.pyplot as plt
def pltpicture():
file = "xxx"
xlist = []
ylist = []
with open(file, "r") as f:
for line in f.readlines():
lines = line.strip().split()
if len(lines) != 2 or int(lines[1]) < 100000:
continue
x, y = int(lines[0]), int(lines[1])
xlist.append(x)
ylist.append(y)
plt.xlabel('X')
plt.ylabel('Y')
plt.scatter(xlist, ylist)
plt.show()

2、更漂亮一些的畫圖方式
上面的圖片比較粗糙,是最簡單的方式,沒有任何相關的配置項。下面我們再用另外一份數據集畫出更漂亮一點的圖。
數據集來自網絡的公開數據集,數據格式如下:
40920 8.326976 0.953952 3
14488 7.153469 1.673904 2
26052 1.441871 0.805124 1
75136 13.147394 0.428964 1
...
第一列每年獲得的飛行??屠锍虜?;
第二列玩視頻游戲所耗時間百分比;
第三列每周消費的冰淇淋公升數;
第四列為label:
1表示不喜歡的人
2表示魅力一般的人
3表示極具魅力的人
現(xiàn)在將每年獲取的飛行里程數作為X坐標,玩視頻游戲所消耗的事件百分比作為Y坐標,畫出圖。
from matplotlib import pyplot as plt
file = "/home/mi/wanglei/data/datingTestSet2.txt"
label1X, label1Y, label2X, label2Y, label3X, label3Y = [], [], [], [], [], []
with open(file, "r") as f:
for line in f:
lines = line.strip().split()
if len(lines) != 4:
continue
distance, rate, label = lines[0], lines[1], lines[3]
if label == "1":
label1X.append(distance)
label1Y.append(rate)
elif label == "2":
label2X.append(distance)
label2Y.append(rate)
elif label == "3":
label3X.append(distance)
label3Y.append(rate)
plt.figure(figsize=(8, 5), dpi=80)
axes = plt.subplot(111)
label1 = axes.scatter(label1X, label1Y, s=20, c="red")
label2 = axes.scatter(label2X, label2Y, s=40, c="green")
label3 = axes.scatter(label3X, label3Y, s=50, c="blue")
plt.xlabel("every year fly distance")
plt.ylabel("play video game rate")
axes.legend((label1, label2, label3), ("don't like", "attraction common", "attraction perfect"), loc=2)
plt.show()
最后效果圖:

3、scatter函數詳解
我們來看看scatter函數的簽名:
def scatter(self, x, y, s=None, c=None, marker=None, cmap=None, norm=None,
vmin=None, vmax=None, alpha=None, linewidths=None,
verts=None, edgecolors=None,
**kwargs):
"""
Make a scatter plot of `x` vs `y`
Marker size is scaled by `s` and marker color is mapped to `c`
Parameters
----------
x, y : array_like, shape (n, )
Input data
s : scalar or array_like, shape (n, ), optional
size in points^2. Default is `rcParams['lines.markersize'] ** 2`.
c : color, sequence, or sequence of color, optional, default: 'b'
`c` can be a single color format string, or a sequence of color
specifications of length `N`, or a sequence of `N` numbers to be
mapped to colors using the `cmap` and `norm` specified via kwargs
(see below). Note that `c` should not be a single numeric RGB or
RGBA sequence because that is indistinguishable from an array of
values to be colormapped. `c` can be a 2-D array in which the
rows are RGB or RGBA, however, including the case of a single
row to specify the same color for all points.
marker : `~matplotlib.markers.MarkerStyle`, optional, default: 'o'
See `~matplotlib.markers` for more information on the different
styles of markers scatter supports. `marker` can be either
an instance of the class or the text shorthand for a particular
marker.
cmap : `~matplotlib.colors.Colormap`, optional, default: None
A `~matplotlib.colors.Colormap` instance or registered name.
`cmap` is only used if `c` is an array of floats. If None,
defaults to rc `image.cmap`.
norm : `~matplotlib.colors.Normalize`, optional, default: None
A `~matplotlib.colors.Normalize` instance is used to scale
luminance data to 0, 1. `norm` is only used if `c` is an array of
floats. If `None`, use the default :func:`normalize`.
vmin, vmax : scalar, optional, default: None
`vmin` and `vmax` are used in conjunction with `norm` to normalize
luminance data. If either are `None`, the min and max of the
color array is used. Note if you pass a `norm` instance, your
settings for `vmin` and `vmax` will be ignored.
alpha : scalar, optional, default: None
The alpha blending value, between 0 (transparent) and 1 (opaque)
linewidths : scalar or array_like, optional, default: None
If None, defaults to (lines.linewidth,).
verts : sequence of (x, y), optional
If `marker` is None, these vertices will be used to
construct the marker. The center of the marker is located
at (0,0) in normalized units. The overall marker is rescaled
by ``s``.
edgecolors : color or sequence of color, optional, default: None
If None, defaults to 'face'
If 'face', the edge color will always be the same as
the face color.
If it is 'none', the patch boundary will not
be drawn.
For non-filled markers, the `edgecolors` kwarg
is ignored and forced to 'face' internally.
Returns
-------
paths : `~matplotlib.collections.PathCollection`
Other parameters
----------------
kwargs : `~matplotlib.collections.Collection` properties
See Also
--------
plot : to plot scatter plots when markers are identical in size and
color
Notes
-----
* The `plot` function will be faster for scatterplots where markers
don't vary in size or color.
* Any or all of `x`, `y`, `s`, and `c` may be masked arrays, in which
case all masks will be combined and only unmasked points will be
plotted.
Fundamentally, scatter works with 1-D arrays; `x`, `y`, `s`, and `c`
may be input as 2-D arrays, but within scatter they will be
flattened. The exception is `c`, which will be flattened only if its
size matches the size of `x` and `y`.
Examples
--------
.. plot:: mpl_examples/shapes_and_collections/scatter_demo.py
"""
其中具體的參數含義如下:
x,y是相同長度的數組。
s可以是標量,或者與x,y長度相同的數組,表明散點的大小。默認為20。
c即color,表示點的顏色。
marker 是散點的形狀。
以上就是本文的全部內容,希望對大家的學習有所幫助,也希望大家多多支持腳本之家。
相關文章
python 內置庫wsgiref的使用(WSGI基礎入門)
WSGI(web服務器網關接口)主要規(guī)定了服務器端和應用程序之間的接口,即規(guī)定了請求的URL到后臺處理函數之間的映射該如何實現(xiàn)。wsgiref是一個幫助開發(fā)者開發(fā)測試的Python內置庫,程序員可以通過這個庫了解WSGI的基本運行原理,但是不能把它用在生產環(huán)境上。2021-06-06
Python加pyGame實現(xiàn)的簡單拼圖游戲實例
這篇文章主要介紹了Python加pyGame實現(xiàn)的簡單拼圖游戲,以一個完整實例形式分析了pyGame模塊操作圖片的相關技巧,需要的朋友可以參考下2015-05-05

