python實現(xiàn)感知器算法(批處理)
本文實例為大家分享了Python感知器算法實現(xiàn)的具體代碼,供大家參考,具體內(nèi)容如下
先創(chuàng)建感知器類:用于二分類
# -*- coding: utf-8 -*-
import numpy as np
class Perceptron(object):
"""
感知器:用于二分類
參照改寫 https://blog.csdn.net/simple_the_best/article/details/54619495
屬性:
w0:偏差
w:權(quán)向量
learning_rate:學(xué)習(xí)率
threshold:準(zhǔn)則閾值
"""
def __init__(self,learning_rate=0.01,threshold=0.001):
self.learning_rate=learning_rate
self.threshold=threshold
def train(self,x,y):
"""訓(xùn)練
參數(shù):
x:樣本,維度為n*m(樣本有m個特征,x輸入就是m維),樣本數(shù)量為n
y:類標(biāo),維度為n*1,取值1和-1(正樣本和負(fù)樣本)
返回:
self:object
"""
self.w0=0.0
self.w=np.full(x.shape[1],0.0)
k=0
while(True):
k+=1
dJw0=0.0
dJw=np.zeros(x.shape[1])
err=0.0
for i in range(0,x.shape[0]):
if not (y[i]==1 or y[i]==-1):
print("類標(biāo)只能為1或-1!請核對!")
break
update=self.learning_rate*0.5*(y[i]-self.predict(x[i]))
dJw0+=update
dJw+=update*x[i]
err+=np.abs(0.5*(y[i]-self.predict(x[i])))
self.w0 += dJw0
self.w += dJw
if np.abs(np.sum(self.learning_rate*dJw))<self.threshold or k>500:
print("迭代次數(shù):",k," 錯分樣本數(shù):",err)
break
return self
def predict(self,x):
"""預(yù)測類別
參數(shù):
x:樣本,1*m維,1個樣本,m維特征
返回:
yhat:預(yù)測的類標(biāo)號,1或者-1,1代表正樣本,-1代表負(fù)樣本
"""
if np.matmul(self.w,x.T)+self.w0>0:
yhat=1
else:
yhat=-1
return yhat
def predict_value(self,x):
"""預(yù)測值
參數(shù):
x:樣本,1*m維,1個樣本,m維特征
返回:
y:預(yù)測值
"""
y=np.matmul(self.w,x.T)+self.w0
return y然后為Iris數(shù)據(jù)集創(chuàng)建一個Iris類,用于產(chǎn)生5折驗證所需要的數(shù)據(jù),并且能產(chǎn)生不同樣本數(shù)量的數(shù)據(jù)集。
# -*- coding: utf-8 -*-
"""
Author:CommissarMa
2018年5月23日 16點52分
"""
import numpy as np
import scipy.io as sio
class Iris(object):
"""Iris數(shù)據(jù)集
參數(shù):
data:根據(jù)size裁剪出來的iris數(shù)據(jù)集
size:每種類型的樣本數(shù)量
way:one against the rest || one against one
注意:
此處規(guī)定5折交叉驗證(5-cv),所以每種類型樣本的數(shù)量要是5的倍數(shù)
多分類方式:one against the rest
"""
def __init__(self,size=50,way="one against the rest"):
"""
size:每種類型的樣本數(shù)量
"""
data=sio.loadmat("C:\\Users\\CommissarMa\\Desktop\\模式識別\\課件ppt\\PR實驗內(nèi)容\\iris_data.mat")
iris_data=data['iris_data']#iris_data:原數(shù)據(jù)集,shape:150*4,1-50個樣本為第一類,51-100個樣本為第二類,101-150個樣本為第三類
self.size=size
self.way=way
self.data=np.zeros((size*3,4))
for r in range(0,size*3):
self.data[r]=iris_data[int(r/size)*50+r%size]
def generate_train_data(self,index_fold,index_class,neg_class=None):
"""
index_fold:5折驗證的第幾折,范圍:0,1,2,3,4
index_class:第幾類作為正類,類別號:負(fù)類樣本為-1,正類樣本為1
"""
if self.way=="one against the rest":
fold_size=int(self.size/5)#將每類樣本分成5份
train_data=np.zeros((fold_size*4*3,4))
label_data=np.full((fold_size*4*3),-1)
for r in range(0,fold_size*4*3):
n_class=int(r/(fold_size*4))#第幾類
n_fold=int((r%(fold_size*4))/fold_size)#第幾折
n=(r%(fold_size*4))%fold_size#第幾個
if n_fold<index_fold:
train_data[r]=self.data[n_class*self.size+n_fold*fold_size+n]
else:
train_data[r]=self.data[n_class*self.size+(n_fold+1)*fold_size+n]
label_data[fold_size*4*index_class:fold_size*4*(index_class+1)]=1
elif self.way=="one against one":
if neg_class==None:
print("one against one模式下需要提供負(fù)類的序號!")
return
else:
fold_size=int(self.size/5)#將每類樣本分成5份
train_data=np.zeros((fold_size*4*2,4))
label_data=np.full((fold_size*4*2),-1)
for r in range(0,fold_size*4*2):
n_class=int(r/(fold_size*4))#第幾類
n_fold=int((r%(fold_size*4))/fold_size)#第幾折
n=(r%(fold_size*4))%fold_size#第幾個
if n_class==0:#放正類樣本
if n_fold<index_fold:
train_data[r]=self.data[index_class*self.size+n_fold*fold_size+n]
else:
train_data[r]=self.data[index_class*self.size+(n_fold+1)*fold_size+n]
if n_class==1:#放負(fù)類樣本
if n_fold<index_fold:
train_data[r]=self.data[neg_class*self.size+n_fold*fold_size+n]
else:
train_data[r]=self.data[neg_class*self.size+(n_fold+1)*fold_size+n]
label_data[0:fold_size*4]=1
else:
print("多分類方式錯誤!只能為one against one 或 one against the rest!")
return
return train_data,label_data
def generate_test_data(self,index_fold):
"""生成測試數(shù)據(jù)
index_fold:5折驗證的第幾折,范圍:0,1,2,3,4
返回值:
test_data:對應(yīng)于第index_fold折的測試數(shù)據(jù)
label_data:類別號為0,1,2
"""
fold_size=int(self.size/5)#將每類樣本分成5份
test_data=np.zeros((fold_size*3,4))
label_data=np.zeros(fold_size*3)
for r in range(0,fold_size*3):
test_data[r]=self.data[int(int(r/fold_size)*self.size)+int(index_fold*fold_size)+r%fold_size]
label_data[0:fold_size]=0
label_data[fold_size:fold_size*2]=1
label_data[fold_size*2:fold_size*3]=2
return test_data,label_data然后我們進(jìn)行訓(xùn)練測試,先使用one against the rest策略:
# -*- coding: utf-8 -*-
from perceptron import Perceptron
from iris_data import Iris
import numpy as np
if __name__=="__main__":
iris=Iris(size=50,way="one against the rest")
correct_all=0
for n_fold in range(0,5):
p=[Perceptron(),Perceptron(),Perceptron()]
for c in range(0,3):
x,y=iris.generate_train_data(index_fold=n_fold,index_class=c)
p[c].train(x,y)
#訓(xùn)練完畢,開始測試
correct=0
x_test,y_test=iris.generate_test_data(index_fold=n_fold)
num=len(x_test)
for i in range(0,num):
maxvalue=max(p[0].predict_value(x_test[i]),p[1].predict_value(x_test[i]),
p[2].predict_value(x_test[i]))
if maxvalue==p[int(y_test[i])].predict_value(x_test[i]):
correct+=1
print("錯分?jǐn)?shù)量:",num-correct,"錯誤率:",(num-correct)/num)
correct_all+=correct
print("平均錯誤率:",(num*5-correct_all)/(num*5))然后使用one against one 策略去訓(xùn)練測試:
# -*- coding: utf-8 -*-
from perceptron import Perceptron
from iris_data import Iris
import numpy as np
if __name__=="__main__":
iris=Iris(size=10,way="one against one")
correct_all=0
for n_fold in range(0,5):
#訓(xùn)練
p01=Perceptron()#0類和1類比較的判別器
p02=Perceptron()
p12=Perceptron()
x,y=iris.generate_train_data(index_fold=n_fold,index_class=0,neg_class=1)
p01.train(x,y)
x,y=iris.generate_train_data(index_fold=n_fold,index_class=0,neg_class=2)
p02.train(x,y)
x,y=iris.generate_train_data(index_fold=n_fold,index_class=1,neg_class=2)
p12.train(x,y)
#測試
correct=0
x_test,y_test=iris.generate_test_data(index_fold=n_fold)
num=len(x_test)
for i in range(0,num):
vote0=0
vote1=0
vote2=0
if p01.predict_value(x_test[i])>0:
vote0+=1
else:
vote1+=1
if p02.predict_value(x_test[i])>0:
vote0+=1
else:
vote2+=1
if p12.predict_value(x_test[i])>0:
vote1+=1
else:
vote2+=1
if vote0==max(vote0,vote1,vote2) and int(vote0)==int(y_test[i]):
correct+=1
elif vote1==max(vote0,vote1,vote2) and int(vote1)==int(y_test[i]):
correct+=1
elif vote2==max(vote0,vote1,vote2) and int(vote2)==int(y_test[i]):
correct+=1
print("錯分?jǐn)?shù)量:",num-correct,"錯誤率:",(num-correct)/num)
correct_all+=correct
print("平均錯誤率:",(num*5-correct_all)/(num*5))實驗結(jié)果如圖所示:

以上就是本文的全部內(nèi)容,希望對大家的學(xué)習(xí)有所幫助,也希望大家多多支持腳本之家。
相關(guān)文章
三行代碼使用Python將視頻轉(zhuǎn)Gif的方法示例
本文主要介紹了三行代碼使用Python將視頻轉(zhuǎn)Gif的方法示例,文中通過示例代碼介紹的非常詳細(xì),具有一定的參考價值,感興趣的小伙伴們可以參考一下2021-10-10
python BitMap算法處理20億隨機整數(shù)去重
這篇文章主要為大家介紹了python BitMap算法處理20億隨機整數(shù)去重,有需要的朋友可以借鑒參考下,希望能夠有所幫助,祝大家多多進(jìn)步,早日升職加薪2024-01-01
Python實現(xiàn)的基于優(yōu)先等級分配糖果問題算法示例
這篇文章主要介紹了Python實現(xiàn)的基于優(yōu)先等級分配糖果問題算法,涉及Python針對列表的遍歷、判斷、計算等相關(guān)操作技巧,需要的朋友可以參考下2018-04-04
Python辦公自動化之網(wǎng)絡(luò)監(jiān)控和壓縮文件處理
Python辦公?動化是利用Python編程語?來創(chuàng)建腳本和程序,以簡化、加速和?動化?常辦公任務(wù)和工作流程的過程,本文主要介紹了如何進(jìn)行網(wǎng)絡(luò)監(jiān)控和壓縮文件處理,感興趣的可以了解下2023-12-12

