OpenCV繪制正多邊形的方法
更新時(shí)間:2019年01月12日 11:13:43 作者:激萌小宅
這篇文章主要為大家詳細(xì)介紹了OpenCV繪制正多邊形的方法,具有一定的參考價(jià)值,感興趣的小伙伴們可以參考一下
OpenCV 繪制正多邊形的具體代碼,供大家參考,具體內(nèi)容如下
#include <iostream>
#include <opencv2\core\core.hpp>
#include <opencv2\opencv.hpp>
#include <opencv2\highgui\highgui.hpp>
#include <opencv2\contrib\contrib.hpp>
#include <fstream>
using namespace cv;
using namespace std;
void DeleteRepetition(vector<Point> &Data)
{
vector<Point>::iterator it, it1;
for (it = ++Data.begin(); it != Data.end();) {
it1 = find(Data.begin(), it, *it);
if (it1 != it) it = Data.erase(it);
else it++;
}
}
void Patterns(Mat *src, vector<Point> Dots, int fill)
{
DeleteRepetition(Dots);
if (fill == -1)
{
Point *ImgDot = new Point(Dots.size());
for (int i = 0; i < Dots.size(); i++) {
ImgDot[i] = Dots[i];
}
const Point* ppt = ImgDot;
int npt = Dots.size();
RNG &rng = theRNG();
Scalar color = Scalar(rng.uniform(100, 255), rng.uniform(100, 255), rng.uniform(100, 255));
cv::fillPoly(*src, &ppt, &npt, 1, color);
}
else
{
Dots.push_back(Dots[0]);
RNG &rng = theRNG();
Scalar color = Scalar(rng.uniform(100, 255), rng.uniform(100, 255), rng.uniform(100, 255));
for (int i = 0; i < Dots.size() - 1; i++)
{
line(*src, Dots[i], Dots[i + 1], color, fill);
}
}
}
// https://www.w3cplus.com/canvas/drawing-regular-polygons.html
// http://www.cnblogs.com/xcywt/p/9456526.html
// 圖像、中心點(diǎn)、半徑、邊數(shù)、旋轉(zhuǎn)角度、線寬
void EquilateralPolygon(Mat *src, Point origin, int radius, int brim, int rotate, int fill)
{
if (brim < 3) return;
if (rotate > 360) return;
#define PI 3.14159265
#define ROTATE_COUNT 180
double nAgree = 360 / brim; // 計(jì)算旋轉(zhuǎn)角度
double a = radius * cos(PI / brim); // 計(jì)算垂直向下的長(zhǎng)度
double s = 2 * radius * sin(PI / brim); // 計(jì)算邊長(zhǎng)
vector<Point> Dots;
Point D1, D2;
D1.x = origin.x + radius*cos(-(((180 - nAgree) / 2) + rotate) * PI / 180);
D1.y = origin.y - radius*sin(-(((180 - nAgree) / 2) + rotate) * PI / 180);
D2.x = origin.x + radius*cos(-(((180 - nAgree) / 2) + nAgree + rotate) * PI / 180);
D2.y = origin.y - radius*sin(-(((180 - nAgree) / 2) + nAgree + rotate) * PI / 180);
// 第一條邊的兩個(gè)點(diǎn)
Dots.push_back(D1);
Dots.push_back(D2);
for (int i = 0; i < brim - 2; i++)
{
double dSinRot = sin((nAgree * (i + 1)) * PI / 180);
double dCosRot = cos((nAgree * (i + 1)) * PI / 180);
int x = origin.x + dCosRot * (D2.x - origin.x) - dSinRot * (D2.y - origin.y);
int y = origin.y + dSinRot * (D2.x - origin.x) + dCosRot * (D2.y - origin.y);
Dots.push_back(Point(x, y));
}
Patterns(src, Dots, fill);
Dots.clear();
}
int main()
{
Mat Img = Mat::zeros(800, 800, CV_8UC3);
Point O = Point(400, 400);
circle(Img, O, 2, Scalar(0, 0, 255), -1); //中心點(diǎn)
EquilateralPolygon(&Img, O, 100, 3, 0, -1); // 填充的正三角形
EquilateralPolygon(&Img, O, 200, 3, 0, 1); // 不填充的正三角形
EquilateralPolygon(&Img, O, 200, 3, 30, 1); // 不填充的正三角形,順時(shí)針旋轉(zhuǎn)30度
EquilateralPolygon(&Img, O, 200, 3, 60, 1); // 不填充的正三角形,順時(shí)針旋轉(zhuǎn)60度
EquilateralPolygon(&Img, O, 200, 3, 90, 1); // 不填充的正三角形,順時(shí)針旋轉(zhuǎn)90度
EquilateralPolygon(&Img, O, 200, 3, 120, 1);// 不填充的正三角形,順時(shí)針旋轉(zhuǎn)120度
EquilateralPolygon(&Img, O, 200, 3, 150, 1);// 不填充的正三角形,順時(shí)針旋轉(zhuǎn)150度
EquilateralPolygon(&Img, O, 200, 3, 180, 1);// 不填充的正三角形,順時(shí)針旋轉(zhuǎn)180度
EquilateralPolygon(&Img, O, 230, 4, 0, 2); // 不填充的正四邊形
EquilateralPolygon(&Img, O, 250, 5, 0, 3); // 不填充的正五邊形
EquilateralPolygon(&Img, O, 270, 6, 0, 4); // 不填充的正六邊形
EquilateralPolygon(&Img, O, 290, 7, 0, 5); // 不填充的正七邊形
EquilateralPolygon(&Img, O, 310, 8, 0, 6); // 不填充的正八邊形
EquilateralPolygon(&Img, O, 330, 9, 0, 7); // 不填充的正九邊形
EquilateralPolygon(&Img, O, 350, 10, 0, 8);// 不填充的正十邊形
imshow("正多邊形", Img);
waitKey(0);
return 0;
}
效果如下:

以上就是本文的全部?jī)?nèi)容,希望對(duì)大家的學(xué)習(xí)有所幫助,也希望大家多多支持腳本之家。
相關(guān)文章
C語(yǔ)言中strcmp的實(shí)現(xiàn)原型
這篇文章主要介紹了C語(yǔ)言中strcmp的實(shí)現(xiàn)原型的相關(guān)資料,這里提供實(shí)例幫助大家理解這部分內(nèi)容,希望能幫助到大家,需要的朋友可以參考下2017-08-08
用c語(yǔ)言實(shí)現(xiàn)和平精英的完整代碼
這篇文章主要介紹了用c語(yǔ)言實(shí)現(xiàn)和平精英的完整代碼,本文給大家介紹的非常詳細(xì),對(duì)大家的學(xué)習(xí)或工作具有一定的參考借鑒價(jià)值,需要的朋友可以參考下2021-04-04

