對Python3+gdal 讀取tiff格式數(shù)據(jù)的實例講解
1、遇到的問題:numpy版本
im_data = dataset.ReadAsArray(0,0,im_width,im_height)#獲取數(shù)據(jù) 這句報錯
升級numpy:pip install -U numpy 但是提示已經(jīng)是最新版本
解決:卸載numpy 重新安裝
2.直接從壓縮包中讀取tiff圖像
參考:http://gdal.org/gdal_virtual_file_systems.html#gdal_virtual_file_systems_vsizip
當前情況是2層壓縮: /'/vsitar/C:/Users/summer/Desktop/a_PAN1.tiff'
3.讀tiff
def readTif(fileName):
merge_img = 0
driver = gdal.GetDriverByName('GTiff')
driver.Register()
dataset = gdal.Open(fileName)
if dataset == None:
print(fileName+ "掩膜失敗,文件無法打開")
return
im_width = dataset.RasterXSize #柵格矩陣的列數(shù)
print('im_width:', im_width)
im_height = dataset.RasterYSize #柵格矩陣的行數(shù)
print('im_height:', im_height)
im_bands = dataset.RasterCount #波段數(shù)
im_geotrans = dataset.GetGeoTransform()#獲取仿射矩陣信息
im_proj = dataset.GetProjection()#獲取投影信息
if im_bands == 1:
band = dataset.GetRasterBand(1)
im_data = dataset.ReadAsArray(0,0,im_width,im_height) #獲取數(shù)據(jù)
cdata = im_data.astype(np.uint8)
merge_img = cv2.merge([cdata,cdata,cdata])
cv2.imwrite('C:/Users/summer/Desktop/a.jpg', merge_img)
#
elif im_bands == 4:
# # im_data = dataset.ReadAsArray(0,0,im_width,im_height)#獲取數(shù)據(jù)
# # im_blueBand = im_data[0,0:im_width,0:im_height] #獲取藍波段
# # im_greenBand = im_data[1,0:im_width,0:im_height] #獲取綠波段
# # im_redBand = im_data[2,0:im_width,0:im_height] #獲取紅波段
# # # im_nirBand = im_data[3,0:im_width,0:im_height] #獲取近紅外波段
# # merge_img=cv2.merge([im_redBand,im_greenBand,im_blueBand])
# # zeros = np.zeros([im_height,im_width],dtype = "uint8")
# # data1 = im_redBand.ReadAsArray
# band1=dataset.GetRasterBand(1)
# band2=dataset.GetRasterBand(2)
# band3=dataset.GetRasterBand(3)
# band4=dataset.GetRasterBand(4)
data1=band1.ReadAsArray(0,0,im_width,im_height).astype(np.uint16) #r #獲取數(shù)據(jù)
data2=band2.ReadAsArray(0,0,im_width,im_height).astype(np.uint16) #g #獲取數(shù)據(jù)
data3=band3.ReadAsArray(0,0,im_width,im_height).astype(np.uint16) #b #獲取數(shù)據(jù)
data4=band4.ReadAsArray(0,0,im_width,im_height).astype(np.uint16) #R #獲取數(shù)據(jù)
# print(data1[1][45])
# output1= cv2.convertScaleAbs(data1, alpha=(255.0/65535.0))
# print(output1[1][45])
# output2= cv2.convertScaleAbs(data2, alpha=(255.0/65535.0))
# output3= cv2.convertScaleAbs(data3, alpha=(255.0/65535.0))
merge_img1 = cv2.merge([output3,output2,output1]) #B G R
cv2.imwrite('C:/Users/summer/Desktop/merge_img1.jpg', merge_img1)
4.圖像裁剪:
import cv2 import numpy as np import os tiff_file = './try_img/2.tiff' save_folder = './try_img_re/' if not os.path.exists(save_folder): os.makedirs(save_folder) tif_img = cv2.imread(tiff_file) width, height, channel = tif_img.shape # print height, width, channel : 6908 7300 3 threshold = 1000 overlap = 100 step = threshold - overlap x_num = width/step + 1 y_num = height/step + 1 print x_num, y_num N = 0 yj = 0 for xi in range(x_num): for yj in range(y_num): # print xi if yj <= y_num: print yj x = step*xi y = step*yj wi = min(width,x+threshold) hi = min(height,y+threshold) # print wi , hi if wi-x < 1000 and hi-y < 1000: im_block = tif_img[wi-1000:wi, hi-1000:hi] elif wi-x > 1000 and hi-y < 1000: im_block = tif_img[x:wi, hi-1000:hi] elif wi-x < 1000 and hi-y > 1000: im_block = tif_img[wi-1000:wi, y:hi] else: im_block = tif_img[x:wi,y:hi] cv2.imwrite(save_folder + 'try' + str(N) + '.jpg', im_block) N += 1
以上這篇對Python3+gdal 讀取tiff格式數(shù)據(jù)的實例講解就是小編分享給大家的全部內(nèi)容了,希望能給大家一個參考,也希望大家多多支持腳本之家。
相關(guān)文章
Python如何利用xlrd和xlwt模塊操作Excel表格
這篇文章主要給大家介紹了關(guān)于Python如何利用xlrd和xlwt模塊操作Excel表格的相關(guān)資料,其中xlrd模塊實現(xiàn)對excel文件內(nèi)容讀取,xlwt模塊實現(xiàn)對excel文件的寫入,需要的朋友可以參考下2022-03-03
Python腳本實現(xiàn)抓取指定網(wǎng)站上的所有圖片
對于開發(fā)者、數(shù)據(jù)分析師以及研究人員而言,從網(wǎng)頁中提取有價值的信息是一項至關(guān)重要的技能,本文將詳細介紹如何使用Python編寫一個腳本來自動抓取指定網(wǎng)站上的所有圖片,需要的可以參考下2024-10-10
Python?數(shù)據(jù)類型中的字符串和數(shù)字
這篇文章主要介紹了Python?數(shù)據(jù)類型中的字符串和數(shù)字,Python3中有六個標準的數(shù)據(jù)類型,Number、String、List、Tuple、Set、Dictionary,加先來我們就來看看這幾種數(shù)據(jù)類型的具體相關(guān)介紹,需要的小伙伴可以參考一下2022-02-02

