python實現(xiàn)決策樹分類(2)
在上一篇文章中,我們已經(jīng)構建了決策樹,接下來可以使用它用于實際的數(shù)據(jù)分類。在執(zhí)行數(shù)據(jù)分類時,需要決策時以及標簽向量。程序比較測試數(shù)據(jù)和決策樹上的數(shù)值,遞歸執(zhí)行直到進入葉子節(jié)點。
這篇文章主要使用決策樹分類器就行分類,數(shù)據(jù)集采用UCI數(shù)據(jù)庫中的紅酒,白酒數(shù)據(jù),主要特征包括12個,主要有非揮發(fā)性酸,揮發(fā)性酸度, 檸檬酸, 殘?zhí)呛?氯化物, 游離二氧化硫, 總二氧化硫,密度, pH,硫酸鹽,酒精, 質量等特征。
下面是具體代碼的實現(xiàn):
#coding :utf-8
'''
2017.6.26 author :Erin
function: "decesion tree" ID3
'''
import numpy as np
import pandas as pd
from math import log
import operator
import random
def load_data():
red = [line.strip().split(';') for line in open('e:/a/winequality-red.csv')]
white = [line.strip().split(';') for line in open('e:/a/winequality-white.csv')]
data=red+white
random.shuffle(data) #打亂data
x_train=data[:800]
x_test=data[800:]
features=['fixed','volatile','citric','residual','chlorides','free','total','density','pH','sulphates','alcohol','quality']
return x_train,x_test,features
def cal_entropy(dataSet):
numEntries = len(dataSet)
labelCounts = {}
for featVec in dataSet:
label = featVec[-1]
if label not in labelCounts.keys():
labelCounts[label] = 0
labelCounts[label] += 1
entropy = 0.0
for key in labelCounts.keys():
p_i = float(labelCounts[key]/numEntries)
entropy -= p_i * log(p_i,2)#log(x,10)表示以10 為底的對數(shù)
return entropy
def split_data(data,feature_index,value):
'''
劃分數(shù)據(jù)集
feature_index:用于劃分特征的列數(shù),例如“年齡”
value:劃分后的屬性值:例如“青少年”
'''
data_split=[]#劃分后的數(shù)據(jù)集
for feature in data:
if feature[feature_index]==value:
reFeature=feature[:feature_index]
reFeature.extend(feature[feature_index+1:])
data_split.append(reFeature)
return data_split
def choose_best_to_split(data):
'''
根據(jù)每個特征的信息增益,選擇最大的劃分數(shù)據(jù)集的索引特征
'''
count_feature=len(data[0])-1#特征個數(shù)4
#print(count_feature)#4
entropy=cal_entropy(data)#原數(shù)據(jù)總的信息熵
#print(entropy)#0.9402859586706309
max_info_gain=0.0#信息增益最大
split_fea_index = -1#信息增益最大,對應的索引號
for i in range(count_feature):
feature_list=[fe_index[i] for fe_index in data]#獲取該列所有特征值
#######################################
# print(feature_list)
unqval=set(feature_list)#去除重復
Pro_entropy=0.0#特征的熵
for value in unqval:#遍歷改特征下的所有屬性
sub_data=split_data(data,i,value)
pro=len(sub_data)/float(len(data))
Pro_entropy+=pro*cal_entropy(sub_data)
#print(Pro_entropy)
info_gain=entropy-Pro_entropy
if(info_gain>max_info_gain):
max_info_gain=info_gain
split_fea_index=i
return split_fea_index
##################################################
def most_occur_label(labels):
#sorted_label_count[0][0] 次數(shù)最多的類標簽
label_count={}
for label in labels:
if label not in label_count.keys():
label_count[label]=0
else:
label_count[label]+=1
sorted_label_count = sorted(label_count.items(),key = operator.itemgetter(1),reverse = True)
return sorted_label_count[0][0]
def build_decesion_tree(dataSet,featnames):
'''
字典的鍵存放節(jié)點信息,分支及葉子節(jié)點存放值
'''
featname = featnames[:] ################
classlist = [featvec[-1] for featvec in dataSet] #此節(jié)點的分類情況
if classlist.count(classlist[0]) == len(classlist): #全部屬于一類
return classlist[0]
if len(dataSet[0]) == 1: #分完了,沒有屬性了
return Vote(classlist) #少數(shù)服從多數(shù)
# 選擇一個最優(yōu)特征進行劃分
bestFeat = choose_best_to_split(dataSet)
bestFeatname = featname[bestFeat]
del(featname[bestFeat]) #防止下標不準
DecisionTree = {bestFeatname:{}}
# 創(chuàng)建分支,先找出所有屬性值,即分支數(shù)
allvalue = [vec[bestFeat] for vec in dataSet]
specvalue = sorted(list(set(allvalue))) #使有一定順序
for v in specvalue:
copyfeatname = featname[:]
DecisionTree[bestFeatname][v] = build_decesion_tree(split_data(dataSet,bestFeat,v),copyfeatname)
return DecisionTree
def classify(Tree, featnames, X):
classLabel=''
root = list(Tree.keys())[0]
firstDict = Tree[root]
featindex = featnames.index(root) #根節(jié)點的屬性下標
#classLabel='0'
for key in firstDict.keys(): #根屬性的取值,取哪個就走往哪顆子樹
if X[featindex] == key:
if type(firstDict[key]) == type({}):
classLabel = classify(firstDict[key],featnames,X)
else:
classLabel = firstDict[key]
return classLabel
if __name__ == '__main__':
x_train,x_test,features=load_data()
split_fea_index=choose_best_to_split(x_train)
newtree=build_decesion_tree(x_train,features)
#print(newtree)
#classLabel=classify(newtree, features, ['7.4','0.66','0','1.8','0.075','13','40','0.9978','3.51','0.56','9.4','5'] )
#print(classLabel)
count=0
for test in x_test:
label=classify(newtree, features,test)
if(label==test[-1]):
count=count+1
acucy=float(count/len(x_test))
print(acucy)
測試的準確率大概在0.7左右。至此決策樹分類算法結束。本文代碼地址
以上就是本文的全部內容,希望對大家的學習有所幫助,也希望大家多多支持腳本之家。
相關文章
pycharm中import導入包呈現(xiàn)灰色的問題及解決
這篇文章主要介紹了pycharm中import導入包呈現(xiàn)灰色的問題及解決方案,具有很好的參考價值,希望對大家有所幫助。如有錯誤或未考慮完全的地方,望不吝賜教2023-05-05
python利用pandas將excel文件轉換為txt文件的方法
今天小編就為大家分享一篇python利用pandas將excel文件轉換為txt文件的方法,具有很好的參考價值,希望對大家有所幫助。一起跟隨小編過來看看吧2018-10-10

