opencv python 基于KNN的手寫體識別的實例
OCR of Hand-written Data using kNN
OCR of Hand-written Digits
我們的目標是構(gòu)建一個可以讀取手寫數(shù)字的應用程序, 為此,我們需要一些train_data和test_data. OpenCV附帶一個images digits.png(在文件夾opencv\sources\samples\data\中),它有5000個手寫數(shù)字(每個數(shù)字500個,每個數(shù)字是20x20圖像).所以首先要將圖片切割成5000個不同圖片,每個數(shù)字變成一個單行400像素.前面的250個數(shù)字作為訓練數(shù)據(jù),后250個作為測試數(shù)據(jù).
import numpy as np
import cv2
import matplotlib.pyplot as plt
img = cv2.imread('digits.png')
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
# Now we split the image to 5000 cells, each 20x20 size
cells = [np.hsplit(row,100) for row in np.vsplit(gray,50)]
# Make it into a Numpy array. It size will be (50,100,20,20)
x = np.array(cells)
# Now we prepare train_data and test_data.
train = x[:,:50].reshape(-1,400).astype(np.float32) # Size = (2500,400)
test = x[:,50:100].reshape(-1,400).astype(np.float32) # Size = (2500,400)
# Create labels for train and test data
k = np.arange(10)
train_labels = np.repeat(k,250)[:,np.newaxis]
test_labels = train_labels.copy()
# Initiate kNN, train the data, then test it with test data for k=1
knn = cv2.ml.KNearest_create()
knn.train(train, cv2.ml.ROW_SAMPLE, train_labels)
ret,result,neighbours,dist = knn.findNearest(test,k=5)
# Now we check the accuracy of classification
# For that, compare the result with test_labels and check which are wrong
matches = result==test_labels
correct = np.count_nonzero(matches)
accuracy = correct*100.0/result.size
print( accuracy )
輸出:91.76
進一步提高準確率的方法是增加訓練數(shù)據(jù),特別是錯誤的數(shù)據(jù).每次訓練時最好是保存訓練數(shù)據(jù),以便下次使用.
# save the data
np.savez('knn_data.npz',train=train, train_labels=train_labels)
# Now load the data
with np.load('knn_data.npz') as data:
print( data.files )
train = data['train']
train_labels = data['train_labels']
OCR of English Alphabets
在opencv / samples / data /文件夾中附帶一個數(shù)據(jù)文件letter-recognition.data.在每一行中,第一列是一個字母表,它是我們的標簽. 接下來的16個數(shù)字是它的不同特征.
import numpy as np
import cv2
import matplotlib.pyplot as plt
# Load the data, converters convert the letter to a number
data= np.loadtxt('letter-recognition.data', dtype= 'float32', delimiter = ',',
converters= {0: lambda ch: ord(ch)-ord('A')})
# split the data to two, 10000 each for train and test
train, test = np.vsplit(data,2)
# split trainData and testData to features and responses
responses, trainData = np.hsplit(train,[1])
labels, testData = np.hsplit(test,[1])
# Initiate the kNN, classify, measure accuracy.
knn = cv2.ml.KNearest_create()
knn.train(trainData, cv2.ml.ROW_SAMPLE, responses)
ret, result, neighbours, dist = knn.findNearest(testData, k=5)
correct = np.count_nonzero(result == labels)
accuracy = correct*100.0/10000
print( accuracy )
輸出:93.06
以上就是本文的全部內(nèi)容,希望對大家的學習有所幫助,也希望大家多多支持腳本之家。
相關(guān)文章
Python 批量驗證和添加手機號碼為企業(yè)微信聯(lián)系人
你是否也有過需要添加很多微信好友的時候,一個個輸入添加太麻煩了,本篇文章手把手教你用Python替我們完成這繁瑣的操作,大家可以在過程中查缺補漏,看看自己掌握程度怎么樣2021-10-10
Python數(shù)據(jù)結(jié)構(gòu)與算法之圖的基本實現(xiàn)及迭代器實例詳解
這篇文章主要介紹了Python數(shù)據(jù)結(jié)構(gòu)與算法之圖的基本實現(xiàn)及迭代器,結(jié)合實例形式詳細分析了數(shù)據(jù)結(jié)構(gòu)與算法中圖的實現(xiàn)及迭代器相關(guān)算法原理與操作技巧,需要的朋友可以參考下2017-12-12
使用Python實現(xiàn)在Word文檔中進行郵件合并
郵件合并是現(xiàn)代辦公中一項顯著提升效率的技術(shù),它巧妙地將大量個體數(shù)據(jù)與預設的文檔模板相結(jié)合,實現(xiàn)了一次性批量生成定制化文檔,下面我們就來看看如何使用Python實現(xiàn)在Word文檔中進行郵件合并吧2024-04-04
Python matplotlib畫圖時圖例說明(legend)放到圖像外側(cè)詳解
這篇文章主要介紹了Python matplotlib畫圖時圖例說明(legend)放到圖像外側(cè)詳解,具有很好的參考價值,希望對大家有所幫助。一起跟隨小編過來看看吧2020-05-05

